Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T15:17:17.105Z Has data issue: false hasContentIssue false

Strontium aluminum tantalum oxide and strontium aluminum niobium oxide as potential substrates for HTSC thin films

Published online by Cambridge University Press:  03 March 2011

Ruyan Guo
Affiliation:
Materials Research Laboratory. The Pennsylvania State University, University Park, Pennsylvania 16802-4800
A.S. Bhalla
Affiliation:
Materials Research Laboratory. The Pennsylvania State University, University Park, Pennsylvania 16802-4800
Jyh Sheen
Affiliation:
Materials Research Laboratory. The Pennsylvania State University, University Park, Pennsylvania 16802-4800
F.W. Ainger
Affiliation:
Materials Research Laboratory. The Pennsylvania State University, University Park, Pennsylvania 16802-4800
S. Erdei
Affiliation:
Materials Research Laboratory. The Pennsylvania State University, University Park, Pennsylvania 16802-4800
E.C. Subbarao
Affiliation:
Materials Research Laboratory. The Pennsylvania State University, University Park, Pennsylvania 16802-4800
L.E. Cross
Affiliation:
Materials Research Laboratory. The Pennsylvania State University, University Park, Pennsylvania 16802-4800
Get access

Abstract

Single crystal fibers of A(B11/2B21/2)O3 perovskites type with compositions Sr(Al1/2Ta1/2)O3 (SAT) and Sr(Al1/2Nb1/2)O3 (SAN) were grown successfully for the first time, using a laser-heated pedestal growth (LHPG) technique. Their crystallographic structures were found to be simple cubic perovskite with lattice parameters a = 3.8952 Å (SAT) and a = 3.8995 Å (SAN) that are close lattice matches to the YBCO superconductors. No structural phase transitions or twins have been found, and the average coefficients of the thermal expansion match well with the YBCO superconductor materials. We report that SAT is one of the most promising substrates to date for the epitaxial growth of HTSC thin films suitable for microwave device applications as it has low dielectric constants (K ∼ 11–12, at 100 Hz–10 GHz and 300 K) and low dielectric loss (∼4 × 10−5 at 10 kHz and 80 K), together with lattice parameter matching, thermal expansion matching, and chemical compatibility with the high Tc superconductors (YBCO).

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Guo, R., Bhalla, A. S., Cross, L. E., and Roy, R., J. Mater. Res. 9, 16441656 (1994).CrossRefGoogle Scholar
2Wood, E. A., Am. Min. 36, 768 (1951).Google Scholar
3Wong-Ng, W., Gayle, F. W., Kaiser, D. L., Warkins, S. F., and Fronczek, F. R., Phys. Rev. B 41 (7), 4220 (1990).CrossRefGoogle Scholar
4You, H., Welp, U., and Fang, Y., Phys. Rev. B 43 (4), 3660 (1991).CrossRefGoogle Scholar
5Dinger, R. J. and White, D. J., IEEE Trans. Antennas Propag. 38 (8), 1313 (1990).CrossRefGoogle Scholar
6Brandle, CD. and Fratello, V.J., J. Mater. Res. 5, 2160 (1990).CrossRefGoogle Scholar
7Haggerty, J. S., Menashi, W. P., and Wenckus, J. F., Method for Forming Refractory Fibers by Laser Energy, U.S. Patent 3 944 640, March 16, 1976; Apparatus for Forming Refractory Fibers, U.S. Patent 4012213, March 15, 1977.Google Scholar
8Feigelson, R. S., MRS Bull. XIII, 47 (1988).CrossRefGoogle Scholar
9Yamamoto, J. and Bhalla, A. S., Mater Res. Bull. 24, 761 (1989).CrossRefGoogle Scholar
10Hakki, B. W. and Coleman, P. D., IEEE Trans. Microwave Theory Tech. MTT–8, 402 (1960).CrossRefGoogle Scholar
11Dube, D. C., Lanagan, M. T., Kim, J. H., and Jang, S. J., J. Appl. Phys. 63, 2466 (1988).CrossRefGoogle Scholar
12Ganits, F., Chemekova, T. Yu., and Udalov, Yu.P., Zh. Neorg. Khim. 24 (2), 471 (1979); Russ. J. Inorg. Chem. (Engl. Transl.) 24 (2), 260 (1979).Google Scholar
13Glasser, F. P. and Dent Glasser, L.S., J. Am. Ceram. Soc. 46, 377 (1963).CrossRefGoogle Scholar
14Guo, R., Bhalla, A. S., and Cross, L. E., J. Appl. Phys. 75 (9), 47044708 (1994).CrossRefGoogle Scholar
15Shannon, R. D., J. Appl. Phys. 73 (1), 348 (1993).CrossRefGoogle Scholar
16Ravindranathan, P.et at, unpublished results.Google Scholar
17Findikoglu, A. T., Doughty, C., Bhattacharya, S., Li, Qi, Xi, X. X., Venkatesan, T., Fahey, R. E., Stauss, A. J., and Phillips, J. M., Appl. Phys. Lett. 61, 1718 (1992).CrossRefGoogle Scholar
18Findikoglu, A. T., Bhattacharya, S., Doughty, C., Pambianchi, M. S., Li, Qi, Xi, X. X., Anlage, S. M., Fahey, R. E., Strauss, A. J., Phillips, J. M., and Venkatesan, T., IEEE Trans. Appl. Superconductivity 3 (1), 1425 (1993).CrossRefGoogle Scholar
19Mopsik, F. I., National Institute of Standards and Technology, private communication.Google Scholar
20Breval, E., Dodds, G. C., and Macmillan, N. H., Mater. Res. Bull. 20, 413 (1985).CrossRefGoogle Scholar