Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T21:15:24.694Z Has data issue: false hasContentIssue false

Stress engineering with AlN/GaN superlattices for epitaxial GaN on 200 mm silicon substrates using a single wafer rotating disk MOCVD reactor

Published online by Cambridge University Press:  07 August 2015

Jie Su*
Affiliation:
Veeco MOCVD Operations, Somerset, New Jersey 08873, USA
Eric A. Armour
Affiliation:
Veeco MOCVD Operations, Somerset, New Jersey 08873, USA
Balakrishnan Krishnan
Affiliation:
Veeco MOCVD Operations, Somerset, New Jersey 08873, USA
Soo Min Lee
Affiliation:
Veeco MOCVD Operations, Somerset, New Jersey 08873, USA
George D. Papasouliotis
Affiliation:
Veeco MOCVD Operations, Somerset, New Jersey 08873, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We are reporting on stress engineering utilizing AlN/GaN superlattices (SLs) for epitaxy of GaN layers on 200 mm silicon substrates carried out in Veeco's Propel™ rotating disk, single wafer metal organic chemical vapor deposition (MOCVD) reactor. The Turbodisc® reactor is designed to have homogeneous alkyl/hydride flow distribution and uniform temperature profile, which translate into excellent uniformity and concentric symmetry in epilayer thickness and alloy composition. This feature results in uniform and controllable stress in epilayers across large-size substrates. Crack-free 2 μm GaN layers were grown on 200 mm Si using uniformly strained AlN/GaN SLs with periods of 3–5 and 10–30 nm, respectively. Compressive and tensile stress can be precisely adjusted by changing the thickness of the AlN and GaN layers in the SLs, resulting in controllable wafer curvature/bow after cool down. For a fixed period thickness structure, the effects of growth conditions, such as growth rate of GaN, AlN V/III ratio, and growth temperature, on wafer stress were investigated.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Saito, W., Takada, Y., Kuraguchi, M., Omura, I., Ogura, T., and Ohashi, H.: High breakdown voltage AlGaN-GaN power HEMT design and high current density switching behavior. IEEE Trans. Electron Devices 50, 2528 (2003).CrossRefGoogle Scholar
Saito, W., Takada, Y., Kuraguchi, M., Tsuda, K., and Omura, I.: Recessed-gate structure approach towards normally off high-voltage AlGaN/GaN HEMT for power electronic applications. IEEE Trans. Electron Devices 53, 356 (2006).CrossRefGoogle Scholar
Ideda, N., Niiyama, Y., Kambayashi, H., Sato, Y., Nomura, T., Kato, S., and Yoshida, S.: GaN power transistors on Si substrates for switching applications. Proc. IEEE 98, 1151 (2010).Google Scholar
Shealy, J.: Progress in Si-based AlGaN HEMTs for RF power amplifiers. In Top. Meet. Silicon Monolithic Integr. Circuits RF Syst. 166 (2001).Google Scholar
Hoke, W.E., Chelakara, R.V., Bettencourt, J.P., Kazior, T.E., LaRoche, J.R., Kennedy, T.D., Mosca, J.J., Torabi, A., Kerr, A.J., Lee, H.S., and Palacios, T.: Monolithic integration of silicon CMOS and GaN transistors in a current mirror circuit. J. Vac. Sci. Technol., B 30, 02B101 (2012).CrossRefGoogle Scholar
Daddar, A., Schulze, F., Wienecke, M., Gadanecz, A., Blasing, J., Veit, P., Hempel, T., Diez, A., Christen, J., and Krost, A.: Epitaxy of GaN on silicon-impact of symmetry and surface reconstruction. New J. Phys. 9, 389 (2007).Google Scholar
Cordier, Y., Moreno, J., Baron, N., Frayssinet, E., Chauveau, J., Nemoz, M., Chenot, S., Damilano, B., and Semond, F.: Growth of GaN based structure on Si (110) by molecular beam epitaxy. J. Cryst. Growth 312, 2683 (2010).CrossRefGoogle Scholar
Wan, J., Venugopal, R., Melloch, M., Liaw, H., and Rummel, W.: Growth of crack-free hexagonal GaN films on Si (100). Appl. Phys. Lett. 79, 1459 (2001).CrossRefGoogle Scholar
Schulze, F., Dadgar, A., Blasing, J., Diez, A., and Krost, A.: Metalorganic vapor phase epitaxy grown InGaN/GaN light-emitting diodes on Si (001) substrate. Appl. Phys. Lett. 88, 121114 (2006).CrossRefGoogle Scholar
Olesinski, R., Kanani, N., and Abbaschian, G.: The Ga-si (gllium-silicon) system. Bull. Alloy Phase Diagrams 6, 362 (1985).CrossRefGoogle Scholar
Sunkara, M., Sharma, S., Miranda, R., Lian, G., and Dickey, E.: Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid-solid method. Appl. Phys. Lett. 79, 1546 (2001).CrossRefGoogle Scholar
Watanabe, A., Takeuchi, T., Hirosawa, K., Amano, H., Hiramatsu, K., and Akasaki, I.: The growth of single crystalline GaN on a Si substrate using AlN as intermediate layer. J. Cryst. Growth 128, 391 (1993).CrossRefGoogle Scholar
Nikishin, S., Faleev, N., Antipov, V., Francoeur, S., Grave de Peralta, L., Seryogin, G., Temkin, H., Prokofyeva, T., Holtz, M., and Chu, S.: High quality GaN grown on Si (111) by gas source molecular beam epitaxy with ammonia. Appl. Phys. Lett. 75, 2073 (1999).CrossRefGoogle Scholar
Dadgar, A., Blasing, J., Diez, A., Alam, A., Heuken, M., and Krost, A.: Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 μm in thickness. Jpn. J. Appl. Phys. 39, L1183 (2000).CrossRefGoogle Scholar
Chen, P., Zhang, R., Zhao, Z., Xi, D., Zhou, B., Xie, S., Lu, W., and Zheng, Y.: Growth of high quality GaN layers with AlN buffer on Si (111) substrates. J. Cryst. Growth 225, 150 (2001).CrossRefGoogle Scholar
Dadgar, A., Poschenrieder, M., Reiher, A., Blasing, J., Christen, J., Krtschil, A., Finger, T., Hempel, T., Diez, A., and Krost, A.: Reduction of stress at the initial stages of GaN growth on Si (111). Appl. Phys. Lett. 82, 28 (2003).CrossRefGoogle Scholar
Bak, S., Mun, D., Jung, K., Park, J., Bae, H., Lee, I., Ha, J., Jeong, T., and Oh, T.: Effect of Al pre-deposition on AlN buffer layer and GaN film grown on Si (111) substrate by MOCVD. Electron. Mater. Lett. 9(3), 367 (2013).CrossRefGoogle Scholar
Zang, K., Wang, L., Chua, S., and Thompson, C.: Structural analysis of metalorganic chemical vapor deposited AlN nucleation layers on Si (111). J. Cryst. Growth 268, 515 (2004).CrossRefGoogle Scholar
Takeuchi, T., Amano, H., Hiramatsu, K., Sawaki, N., and Akasaki, I.: Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer. J. Cryst. Growth 115, 634 (1991).CrossRefGoogle Scholar
Wang, D., Hiroyama, Y., Tamura, M., Ichikawa, M., and Yoshida, S.: Growth of hexagonal GaN on Si (111) coated with a thin flat SiC buffer layer. Appl. Phys. Lett. 77, 1846 (2000).CrossRefGoogle Scholar
Kwon, M., Jeong, Y., Shin, E., Yang, J., Lim, K., Roh, J., and Nahm, K.: Effect of an Al pre-seeded AlN buffer on GaN films grown on Si (111) substrates by using SiC intermediate layers. J. Korean Phys. Soc. 41, 880 (2002).Google Scholar
Armitage, R., Yang, Q., Feick, H., Gebauer, J., Weber, E., Shinkai, S., and Sasaki, K.: Lattice-matched HfN buffer layers for epitaxy of GaN on Si. Appl. Phys. Lett. 81, 1450 (2000).CrossRefGoogle Scholar
He, H., Fan, Z., Yao, Z., and Tang, Z.: Sputtering of ZnO buffer layer on Si for GaN blue light emitting materials. Sci. China 43, 55 (2000).CrossRefGoogle Scholar
Fenwick, W., Melton, A., Xu, T., Li, N., Summers, C., Jamil, M., and Ferguson, I.: Metal organic chemical vapor deposition of crack-free GaN-based light emitting diodes on Si (111) using a thin Al2O3 interlayer. Appl. Phys. Lett. 94, 22105 (2009).CrossRefGoogle Scholar
Dargis, R., Smith, R., Arkun, F., and Clark, A.: Epitaxial rare earth oxide and nitride buffers for GaN growth on Si. Phys. Status Solidi C 11, 569 (2014).CrossRefGoogle Scholar
Tanaka, S., Kawaguchi, Y., Sawaki, N., Hibino, M., and Hiramatsu, K.: Defect structure in selective area growth GaN pyramid on (111) Si substrate. Appl. Phys. Lett. 76, 2701 (2000).CrossRefGoogle Scholar
Kim, M., Bang, Y., Park, N., Choi, C., Seong, T., and Park, S.: Growth of high-quality GaN on Si(111) substrate by ultrahigh vacuum chemical vapor deposition. Appl. Phys. Lett. 78, 2858 (2001).CrossRefGoogle Scholar
Lin, P., Chen, J., Chen, Y., and Chang, L.: Effect of growth temperature on formation of amorphous nitride interlayer between AlN and Si (111). Jpn. J. Appl. Phys. 52, 08JB20 (2013).CrossRefGoogle Scholar
Xi, D., Zheng, Y., Chen, P., Zhao, Z., Chen, P., Xie, S., Shen, B., Gu, S., and Zhang, R.: Microstructure of AlGaN/AlN/Si (111) grown by metalorganic chemical vapor deposition. Phys. Status Solidi A 191, 137 (2002).3.0.CO;2-R>CrossRefGoogle Scholar
Radtke, G., Couillard, M., Botton, G., Zhu, D., and Humphreys, C.: Scanning transmission electron microscopy investigation of the Si (111)/AlN interface grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 97, 251901 (2010).CrossRefGoogle Scholar
Radtke, G., Couillard, M., Botton, G., Zhu, D., and Humphreys, C.: Structure and chemistry of the Si(111)/AlN interface. Appl. Phys. Lett. 100, 011910 (2012).CrossRefGoogle Scholar
Kim, D. and Park, C.: Growth of crack-free GaN films on Si (111) substrates with AlN buffer layers. J. Korean Phys. Soc. 49, 1497 (2006).Google Scholar
Bao, Q., Luo, J., and Zhao, C.: Mechanism of TMAl pre-seeding in AlN epitaxy on Si (111) substrate. Vacuum 101, 184 (2014).CrossRefGoogle Scholar
Lumbantoruan, F., Wong, Y., Wu, Y., Huang, W., Shrestra, N., Luong, T., Tinh, T., and Chang, E.: Investigation of TMAl preflow to the properties of AlN and GaN film grown on Si (111) by MOCVD. IEEE Int. Conf. Semicond. Electron. (2014); p. 20.Google Scholar
Ishikawa, H., Zhao, G., Nakada, N., Egawa, T., Jimbo, T., and Umeno, M.: GaN on Si substrate with AlGaN/AlN intermediate layer. Jpn. J. Appl. Phys. 38, L492 (1999).CrossRefGoogle Scholar
Kim, M., Do, Y., Kang, H., Noh, D., and Park, S.: Effects of step-graded AlxGa1-xN interlayer on properties of GaN grown on Si (111) using ultrahigh vacuum chemical vapor deposition. Appl. Phys. Lett. 79, 2713 (2001).CrossRefGoogle Scholar
Able, A., Wegscheider, W., Engl, K., and Zweck, J.: Growth of crack-free GaN on Si (111) with graded AlGaN buffer layers. J. Cryst. Growth 276, 415 (2005).CrossRefGoogle Scholar
Yang, Y., Xiang, P., Liu, M., Chen, W., He, Z., Han, X., Ni, Y., Yang, F., Yao, Y., Wu, Z., Liu, Y., and Zhang, B.: Effect of compositionally graded AlGaN buffer layer grown by different functions of trimethylaluminium flow rates on properties of GaN on Si (111) substrates. J. Cryst. Growth 376, 23 (2013).CrossRefGoogle Scholar
Marchand, H., Zhao, L., Zhang, N., Moran, B., Coffie, R., Mishra, U., Speck, J., DenBaars, S., and Freitas, J.: Metalorganic chemical vapor deposition of GaN on Si (111): Stress control and application to field-effect transistors. J. Appl. Phys. 89, 7846 (2001).CrossRefGoogle Scholar
Cheng, K., Leys, M., Degroote, S., Germain, M., and Borghs, G.: High quality GaN grown on silicon (111) using a SixNy interlayer by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 92, 192111 (2008).CrossRefGoogle Scholar
Liu, H.F., Dolmanan, S.B., Zhang, L., Chua, S.J., Chi, D.Z., Heuken, M., and Tripathy, S.: Influence of stress on structural properties of AlGaN/GaN high electron mobility transistor layers grown on 150 mm diameter Si (111) substrate. J. Appl. Phys. 113, 023510 (2013).CrossRefGoogle Scholar
Feltin, E., Beaumont, B., Laugt, M., de Mierry, P., Vennegues, P., Lahreche, H., Leroux, M., and Gibart, P.: Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 79, 3230 (2001).CrossRefGoogle Scholar
Egawa, T., Moku, T., Ishikawa, H., Ohtsuka, K., and Jimbo, T.: Improved characteristics of blue and green InGaN-based light-emitting diodes on Si grown by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 41, L663 (2002).CrossRefGoogle Scholar
Jang, S. and Lee, C.: High-quality GaN/Si (111) epitaxial layers grown with various Al0.3GaN0.7/GaN superlattices as intermediate layer by MOCVD. J. Cryst. Growth 253, 64 (2003).CrossRefGoogle Scholar
Kim, T., Yang, S., Son, J., Hong, Y., and Yang, G.: Growth of a GaN epilayer on a Si (111) substrate by using an AlN/GaN superlattice and application to a GaN microcavity structure with dielectric-distributed bragg reflector. J. Korean Phys. Soc. 50, 801 (2007).CrossRefGoogle Scholar
Ubukata, A., Ikenaga, K., Akutsu, N., Yamaguchi, A., Matsumoto, K., Yamazaki, T., and Egawa, T.: GaN growth on 150-mm-diameter (111) Si substrates. J. Cryst. Growth 298, 198 (2007).CrossRefGoogle Scholar
Christy, D., Egawa, T., Yano, Y., Tokunaga, H., Shimamura, H., Yamaoka, Y., Ubukata, A., Tabuchi, T., and Matsumoto, K.: Uniform growth of AlGaN/GaN high electron mobility transistors on 200 mm silicon (111) substrate. Appl. Phys. Express 6, 026501 (2013).CrossRefGoogle Scholar
Amano, H., Iwaya, M., Kashima, T., Katsuragawa, M., Akasaki, I., Han, J., Hearne, S., Floro, J., Chason, E., and Figiel, J.: Stress and defect control in GaN using low temperature interlayers. Jpn. J. Appl. Phys. 37, L1540 (1998).CrossRefGoogle Scholar
Waldrip, K., Han, J., Figiel, J., Zhou, H., Makarona, E., and Nurmikko, A.: Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors. Appl. Phys. Lett. 78, 3205 (2001).CrossRefGoogle Scholar
Blasing, J., Reiher, A., Dadgar, A., Diez, A., and Krost, A.: The origin of stress reduction by low-temperature AlN interlayers. Appl. Phys. Lett. 81, 2722 (2002).CrossRefGoogle Scholar
Raghavan, S., Weng, X., Dickey, E., and Redwing, J.: Effect of AlN interlayers on growth stress in GaN layers deposition on (111) Si. Appl. Phys. Lett. 87, 142101 (2005).CrossRefGoogle Scholar
Han, J., Waldrip, K., Lee, S., Figiel, J., Hearne, S., Petersen, G., and Myers, S.: Control and elimination of cracking of AlGaN using low-temperature AlGaN interlayers. Appl. Phys. Lett. 78, 67 (2001).CrossRefGoogle Scholar
Dadgar, A., Poschenrieder, M., Blasing, J., Fehse, K., Diez, A., and Krost, A.: Thick, crack-free blue light-emitting diodes on Si (11) using low-temperature AlN interlayers and in situ SixNy masking. Appl. Phys. Lett. 80, 3670 (2002).CrossRefGoogle Scholar
Lee, K., Shin, E., and Lim, K.: Reduction of dislocations in GaN epilayers grown on Si (111) substrate using SixNy inserting layer. Appl. Phys. Lett. 85, 1502 (2004).CrossRefGoogle Scholar
Riemann, T., Hempel, T., Christen, J., Veit, P., Clos, R., Dadgar, A., Krost, A., Haboeck, U., and Hoffmann, A.: Optical and structural microanalysis of GaN grown on SiN submonolayers. J. Appl. Phys. 99, 123518 (2006).CrossRefGoogle Scholar
Arslan, E., Ozturk, M., Ozcelik, S., and Ozbay, E.: The effect of SixNy interlayer on the quality of GaN epitaxial layers grown on Si (111) substrates by MOCVD. Current Appl. Phys. 9, 472 (2009).CrossRefGoogle Scholar
Wang, T., Ou, S., Horng, R., and Wuu, D.: Improved GaN-on-Si epitaxial quality by incorporating various SixNy interlayer structures. J. Cryst. Growth 399, 27 (2014).CrossRefGoogle Scholar
Hearne, S., Chason, E., Han, J., Floro, J., Figiel, J., Hunter, J., Amano, H., and Tsong, I.: Stress evolution during metalorganic chemical vapor deposition of GaN. Appl. Phys. Lett. 74, 356 (1999).CrossRefGoogle Scholar
Hearne, S., Han, J., Lee, S., Floro, J., Follstaedt, D., Chason, E., and Tsong, I.: Brittle-ductile relaxation kinetics of strained AlGaN/GaN heterostructures. Appl. Phys. Lett. 76, 1534 (2000).CrossRefGoogle Scholar
Mitrovic, B., Parekh, A., Ramer, J., Merai, V., Armour, E., Kadinski, L., and Gurary, A.: Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors. J. Cryst. Growth 289, 708 (2006).CrossRefGoogle Scholar
Mitrovic, B., Gurary, A., and Quinn, W.: Process conditions optimization for the maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CRD modeling. J. Cryst. Growth 303, 323 (2007).CrossRefGoogle Scholar
Armour, E., Lu, F., Belousov, M., Lee, D., and Quinn, W.: LED growth compatibility between 2”, 4” and 6” sapphire. Semicond. Today 4, 82 (2009).Google Scholar
Heying, B., Wu, X., Keller, S., Li, Y., Kapolnel, D., Keller, B., and DenBaars, S.: Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films. Appl. Phys. Lett. 68, 643 (1996).CrossRefGoogle Scholar
Metzger, T., Hopler, R., Born, E., Ambacher, O., Stutzmann, M., Stommer, R., Schuster, M., Gobel, H., Christiansen, S., Albrecht, M., and Strunk, H.: Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry. Philos. Mag. A 77, 1013 (1998).CrossRefGoogle Scholar
Kaganer, V., Brandt, O., Trampert, A., and Ploog, K.: X-ray diffraction peak profiles from threading dislocations in GaN epitaxial films. Phys. Rev. B 72, 045423 (2005).CrossRefGoogle Scholar
Stoney, G.: The tension of metallic films deposited by electrolysis. Proc. R. Soc. London, Ser. A 82, 172 (1909).Google Scholar
Feng, X., Huang, Y., and Rosakis, A.: On the Stoney formula for a thin film/substrate system with nonuniform substrate thickness. J. Appl. Mech. 74, 1276 (2007).CrossRefGoogle Scholar
Hoffman, R.: Stresses in thin films: The relevance of grain boundaries and impurities. Thin Solid Films 34, 185 (1976).CrossRefGoogle Scholar
Chaudhari, P.: Grain growth and stress relief in thin films. J. Vac. Sci. Technol. 9, 520 (1972).CrossRefGoogle Scholar
Thompson, C.: Grain growth in thin films. Annu. Rev. Mater. Sci. 20, 245 (1990).CrossRefGoogle Scholar
Raghavan, S., Weng, X., Dickey, E., and Redwing, J.: Correlation of growth stress and structural evolution during metalorganic chemical vapor deposition of GaN on (111) Si. Appl. Phys. Lett. 88, 041904 (2006).CrossRefGoogle Scholar
Bottcher, T., Einfeldt, S., Figge, S., Chierchia, R., Heinke, H., Hommel, D., and Speck, J.: The role of high-temperature island coalescence in the development of stresses in GaN films. Appl. Phys. Lett. 78, 1976 (2001).CrossRefGoogle Scholar
Sheldon, B., Lau, K., and Pajamani, A.: Intrinsic stress, island coalescence, and surface roughness during the growth of polycrystalline films. J. Appl. Phys. 90, 5097 (2001).CrossRefGoogle Scholar
Gao, H. and Nix, W.: Surface roughening of heteroepitaxial thin films. Annu. Rev. Mater. Sci. 29, 173 (1999).CrossRefGoogle Scholar
Wickenden, A., Koleske, D., Henry, R., Gorman, R., Twigg, M., Fatemi, M., Freitas, J., and Moore, W.: The influence of OMVPE growth pressure on the morphology, compensation, and doping of GaN and related alloys. J. Electron. Mater. 29, 21 (2000).CrossRefGoogle Scholar
Wang, K., Pavlidis, D., and Singh, J.: Initial stages of GaN/GaAs(100) growth by metalorganic chemical vapor deposition. J. Appl. Phys. 80, 1823 (1996).CrossRefGoogle Scholar
Wei, C., Edgar, J., Ignatiev, C., and Chaudhuri, J.: The role of trimethylgallium flow during nucleation layer deposition in the optimization of epitaxial GaN films. Thin Solid Films 360, 34 (2000).CrossRefGoogle Scholar
Kim, K., Oh, C., Lee, K., Yang, G., Hong, C., Lim, K., and Lee, H.: Effects of growth rate of a GaN buffer on the properties of GaN on a sapphire substrate. J. Appl. Phys. 85, 8441 (1999).CrossRefGoogle Scholar
Yang, T., Uchida, K., Mishima, T., Kasai, J., and Gotoh, J.: Control of initial nucleation by reducing the V/III ratio during the early stages of GaN growth. Phys. Status Solidi A 180, 45 (2000).3.0.CO;2-5>CrossRefGoogle Scholar
Gherasimova, M., Cui, G., Ren, Z., Su, J., Wang, X., Han, J., Higashimine, K., and Otsuka, H.: Heteroepitaxial evolution of AlN on GaN grown by metal-organic chemical vapor deposition. J. Appl. Phys. 95, 2921 (2004).CrossRefGoogle Scholar
Feng, Y., Wei, H., Yang, S., Chen, Z., Wang, L., Kong, S., Zhao, G., and Liu, X.: Competitive growth mechanisms of AlN on Si (111) by MOVPE. Sci. Rep. 4, 6416 (2014).CrossRefGoogle ScholarPubMed
Krishnan, B., Lee, S., Li, H., Su, J., Lee, D., and Paranjpe, A.: Growth of AlxGa1−xN structures on 8 in. Si (111) substrates. Sens. Mater. 25, 205 (2013).Google Scholar