Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T21:25:08.939Z Has data issue: false hasContentIssue false

Strengthening mechanisms in nanostructured copper/304 stainless steel multilayers

Published online by Cambridge University Press:  29 June 2016

X. Zhang
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
A. Misra
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H. Wang
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
T.D. Shen
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J.G. Swadener
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J.D. Embury
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H. Kung
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R.G. Hoagland
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
M. Nastasi
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Nanostructured Cu/304 stainless steel (SS) multilayers were prepared by magnetron sputtering. 304SS has a face-centered-cubic (fcc) structure in bulk. However, in the Cu/304SS multilayers, the 304SS layers exhibit the fcc structure for layer thickness of ≤5 nm in epitaxy with the neighboring fcc Cu. For 304SS layer thickness larger than 5 nm, body-centered-cubic (bcc) 304SS grains grow on top of the initial 5 nm fcc SS with the Kurdjumov-Sachs orientation relationship between bcc and fcc SS grains. The maximum hardness of Cu/304SS multilayers is about 5.5 GPa (factor of two enhancement compared to rule-of-mixtures hardness) at a layer thickness of 5 nm. Below 5 nm, hardness decreases with decreasing layer thickness. The peak hardness of fcc/fcc Cu/304SS multilayer is greater than that of Cu/Ni, even though the lattice-parameter mismatch between Cu and Ni is five times greater than that between Cu and 304SS. This result may primarily be attributed to the higher interface barrier stress for single-dislocation transmission across the {111} twinned interfaces in Cu/304SS as compared to the {100} interfaces in Cu/Ni.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Clemens, B.M., Kung, H., and Barnett, S.A., MRS Bull. 24(2), 20 (1999).Google Scholar
2.Anderson, P.M., Foecke, T., and Hazzledine, P.M., MRS Bull. 24(2), 27 (1999).CrossRefGoogle Scholar
3.Was, G.S. and Foecke, T., Thin Solid Films 286, 1 (1996).Google Scholar
4.Embury, J.D. and Hirth, J.P., Acta Metall. Mater. 42, 2051 (1994).CrossRefGoogle Scholar
5.Hall, E.O., Proc. Roy. Soc. (London) B 64, 474 (1951).Google Scholar
6.Petch, N.J., J. Iron Steel Inst. 174, 25 (1953).Google Scholar
7.Nix, W.D., Mater. Sci. Eng. A 234-236, 37 (1997).CrossRefGoogle Scholar
8.Koehler, J.S., Phys. Rev. B 2, 547 (1970).Google Scholar
9.Shinn, M., Hultman, L., and Barnett, S.A., J. Mater. Res. 7, 901 (1992).Google Scholar
10.Rao, S.I. and Hazzledine, P.M., Philos. Mag. A 80, 2011 (2000).Google Scholar
11.Misra, A. and Kung, H., Adv. Eng. Mater. 3, 217 (2001).Google Scholar
12.Hazzledine, P.M. and Rao, S.I. in Layered Materials for Structural Applications, edited by Lewandowski, J.J., Ward, C.H., Jackson, M.R., and Hunt, W.H. Jr. (Mater. Res. Soc. Symp. Proc. 434, Pittsburgh, PA, 1996), pp. 135140.Google Scholar
13.Tench, D.M. and White, J.T., J. Electrochem. Soc. 138, 3757 (1991).CrossRefGoogle Scholar
14.Parvin, K., Weathersby, S.P., Barbee, T.W. Jr., Weihs, T.P., and Wall, M.A. in Structure and Properties of Multilayered Thin Films, edited by Nguyen, T.D., Lairson, B.M., Clemens, B.M., Shin, S-C., and Sato, K. (Mater. Res. Soc. Symp. Proc. 382, Pittsburgh, PA, 1955), pp. 191195.Google Scholar
15.Banas, Jacek and Mazurkiewicz, Andrzej, Mater. Sci. Eng. A 277, 183 (2000).Google Scholar
16.Pethica, J.B. and Oliver, W.C., Phys. Scripta T. 19, 61 (1987).Google Scholar
17.Barbee, T.W., Jacobson, B.E., and Keith, D.L., Thin Solid Films 63, 143 (1979).CrossRefGoogle Scholar
18.Magonon, P.L. and Thomas, G., Metall. Trans. 1, 1577 (1970).Google Scholar
19.Keefer, D.W., Pard, A.G., Rhodes, C.G., and Kramer, D., J. Nucl. Mater. 39, 229 (1971).Google Scholar
20.Chu, X. and Barnett, S.A., J. Appl. Phys. 77, 4403 (1995).Google Scholar
21.Hoagland, R.G., Mitchell, T.E., Hirth, J.P., and Kung, H., Philos. Mag. A 82, 643 (2002).Google Scholar
22.Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., and Embury, J.D., Scripta Mater. 39, 555 (1998).CrossRefGoogle Scholar
23.Vlassak, J.J. and Nix, W.D., J. Mech. Phys. Solids 42, 1223 (1994).Google Scholar
24.Hoagland, R.G. and Kurtz, R. (unpublished).Google Scholar