Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T01:29:57.989Z Has data issue: false hasContentIssue false

Strain measurements and thermal stability of Si1−xGex/Si strained layers

Published online by Cambridge University Press:  31 January 2011

B. Holländer
Affiliation:
Institut für Schicht- und Ionentechnik, KFA-Jülich, Postfach 1913, D-5170 Jülich, Federal Republic of Germany
S. Mantl
Affiliation:
Institut für Festkörperforschung, KFA-Jülich, Postfach 1913, D-5170 Jülich, Federal Republic of Germany
B. Stritzker
Affiliation:
Institut für Festkörperforschung, KFA-Jülich, Postfach 1913, D-5170 Jülich, Federal Republic of Germany
H. Jorke
Affiliation:
AEG-Telefunken, Forschungsinstitut, Sedanstr. 10, D-7900 Ulm, Federal Republic of Germany
E. Kasper
Affiliation:
AEG-Telefunken, Forschungsinstitut, Sedanstr. 10, D-7900 Ulm, Federal Republic of Germany
Get access

Abstract

He ion channeling and backscattering experiments have been performed on MBE-grown Si1−xGex/Si strained layers to investigate the tetragonal lattice distortion and the Ge diffusion after thermal annealing. The tetragonal strain of the epitaxial layers has been determined by measuring the angular deviations of inclined 〈110〉 orientations of the adjacent layers. The measured angular shifts indicate a nearly pseudomorphic layer growth of the virgin sample. The angular yield scans of the Ge signal show a pronounced asymmetry, caused by beam steering in the tetragonally distorted lattices of the different layers. Thermal annealing above 800 °C results in strain relaxation and in layer mixing due to the diffusion of germanium. The observed Ge diffusion is strongly enhanced by the elastic strain in the layered structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Abstreiter, G., Brugger, H., Wolf, T., Jorke, H., and Herzog, H. J., Phys. Rev. Lett. 54, 2441 (1985).Google Scholar
2People, R., Bean, J.C., Lang, D. V., Sergent, A.M., Stormer, H. L., Wecht, K. W., Lynch, R. L., and Baldwin, K., Appl. Phys. Lett. 45, 1231 (1984).Google Scholar
3Kasper, E., Herzog, H. J., Daembkes, H., and Abstreiter, G., Mat. Res. Soc. Symp. Proc. 56, 347 (1986).Google Scholar
4Dismukes, J. P., Ekstrom, L., and Paff, R. J., Journ. Phys. Chem. 68, 3021 (1964).CrossRefGoogle Scholar
5Daembkes, H., presented at the Si-MBE-Symp., Honolulu, 1987.Google Scholar
6Picraux, S.T., Chu, W. K., Allen, W. R., and Ellison, J.A., Nucl. Instr. and Meth. B15, 306 (1986).Google Scholar
7Mantl, S., Buchal, Ch., Stritzker, B., and Saftic, B., Nucl. Instr. and Meth. B15, 314 (1986).CrossRefGoogle Scholar
8Mantl, S., Kasper, E., and Jorke, H. J., Mat. Res. Soc. Symp. Proc. 91, 305 (1987).CrossRefGoogle Scholar
9Kasper, E., Surf. Sci. 174, 630 (1986).Google Scholar
10Doolittle, L. R., Nucl. Instr. and Meth. B15, 277 (1986).Google Scholar
11Feldman, L. C., Bevk, J., Davidson, B.A., Gossmann, H.J., and Mannaerts, J.P., Phys. Rev. Lett. 59, 664 (1987).CrossRefGoogle Scholar
12McVay, G.L. and DuCharme, A.R., J. Appl. Phys. 44, 1409 (1973).CrossRefGoogle Scholar
13Bean, J. C., Fiory, A. T., Hull, R., and Lynch, R. T., Proc. 1st. Int. Symp. Si-MBE (Electromech. Soc, 1985).Google Scholar
14LeGoues, F. K., Iyer, S. S., Delage, S.L., and Tu, K. N., Multilayers: Synth. Properties and Nonelectric Appl., MRS 1987 Fall Meeting, Boston, MA.Google Scholar
15Spaepen, F., Mat. Res. Soc. Symp. Proc. 37, 294 (1985).Google Scholar
16Murakami, M., CRC Critical Reviews in Solid State and Materials Science 11, 317 (1983).CrossRefGoogle Scholar
17Fiory, A.T., Bean, J.C., Hull, R., and Nakahara, S., Phys. Rev. B31, 4063 (1985).Google Scholar