Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T02:31:02.098Z Has data issue: false hasContentIssue false

Static and cyclic creep behavior of in situTiB2 particulate reinforced aluminum composite

Published online by Cambridge University Press:  31 January 2011

Z. Y. Ma
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
S. C. Tjong*
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
S. X. Li
Affiliation:
State Key Laboratory for Fatigue and Fracture of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Static and cyclic creep tests of Al–15 vol% TiB2in situ composite were carried out at 573–623 K. The values of apparent stress exponent and activation energy for cyclic creep of the composite were much higher than that for static creep. Furthermore, the cyclic creep rate tended to decrease with increasing percentage of unloading amount but was independent of the loading frequencies under the frequency ranges investigated. Finally, the true stress exponent of the composite was equal to 8, and the true activation energy was close to the value for the lattice self-diffusion of aluminum by incorporating a threshold stress for the analysis.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nieh, T.G., Metall. Trans. A 15A, 139 (1984).Google Scholar
2.Nardone, V.C. and Strife, J.R., Metall. Trans. A. 18A, 109 (1987).CrossRefGoogle Scholar
3.Nieh, T.G., Xia, K., and Langdon, T.G., J. Eng. Mater. Technol. 110, 77 (1988).Google Scholar
4.Morimoto, T., Yamaoka, T., Lilholt, H., and Taya, M., J. Eng. Mater. Technol. 110, 70 (1988).CrossRefGoogle Scholar
5.Park, K.T., Lavenia, E.J., and Mohamed, F.A., Acta Metall. Mater. 38, 2149 (1990).Google Scholar
6.Pandey, A.B., Mishra, R.S., and Mahajan, Y.R., Scr. Metall. Mater. 24, 1565 (1990).Google Scholar
7.Mishra, R.S. and Pandey, A.B., Metall. Trans. A 21A, 2089 (1990).Google Scholar
8.Pandey, A.B., Mishra, R.S., and Mahajan, Y.R., Acta Metall. Mater. 40, 2045 (1992).CrossRefGoogle Scholar
9.Mohamed, F.A., Park, K.T., and Lavernia, E.J., Mater. Sci. Eng. A150, 21 (1992).Google Scholar
10.Pandey, A.B., Mishra, R.S., and Mahajan, Y.R., Mater. Sci. Eng. A189, 95 (1994).CrossRefGoogle Scholar
11.Dragone, T.L. and Nix, W.D., Acta Metall. Mater. 40, 2781 (1992).CrossRefGoogle Scholar
12.Krajewski, P.E., Allison, J.E., and Jones, J.W., Metall. Trans. A 24A, 2731 (1993).CrossRefGoogle Scholar
13.Furukawa, M., Wang, J., Horita, Z., Nemoto, M., Ma, Y., and Langdon, T.G., Metall. Mater. Trans. A 26A, 633 (1995).Google Scholar
14.Gonzalez-Doncel, G. and Sherby, O.D., Acta. Metall. Mater. 41, 2797 (1993).Google Scholar
15.Cadek, J., Sustek, V., and Pahutova, M., Mater. Sci. Eng. A174, 141 (1994).Google Scholar
16.Cadek, J., Oikawa, H., and Sustek, V., Mater. Sci. Eng. A190, 99 (1995).Google Scholar
17.Park, K.T. and Mohammed, F.A., Metall. Mater. Trans. A 26A, 3119 (1995).CrossRefGoogle Scholar
18.Li, Y. and Mohamed, F.A., Acta Mater. 45, 4775 (1997).Google Scholar
19.Li, Y. and Langdon, T.G., Acta Mater. 45, 4797 (1997).CrossRefGoogle Scholar
20.Purushothman, S. and Tien, J.K., Acta Metall. 26, 519 (1978).CrossRefGoogle Scholar
21.Liu, P.L., Wang, Z.G., and Wang, W.L., Mater. Sci. Technol. 13, 667 (1997).CrossRefGoogle Scholar
22.Greasley, A., Mater. Sci. Technol. 11, 163 (1995).CrossRefGoogle Scholar
23.Ma, Z.Y. and Tjong, S.C., Mater. Sci. Eng. A256, 120 (1998).Google Scholar
24.Liu, P.L., Wang, Z.G., Toda, H., and Kobayashi, T., Scr. Mater. 36, 807 (1997).Google Scholar
25.Ma, Z.Y. and Tjong, S.C., Metall. Mater. Trans. A 28A, 1931 (1997).CrossRefGoogle Scholar
26.Ashby, M.F. and Dyson, B.F., in Advances in Fracture Research, edited by Valluri, S.R. (Pergamon Press, Elmsford, NY, 1985), Vol. 9, p. 3.Google Scholar
27.Park, K.T., Lavernia, E.J., and Mohammed, F.A., Acta Metall. 42, 667 (1994).Google Scholar
28.Li, Y. and Langdon, T.G., Acta Mater. 46, 1143 (1998).Google Scholar
29.Li, Y., Nutt, S.R., and Mohamed, F.A., Acta Mater. 45, 2607 (1997).CrossRefGoogle Scholar
30.Purushothman, S. and Tien, J.K., Acta Metall. 26, 519 (1978).CrossRefGoogle Scholar
31.Bird, J.E., Mukherjee, A.K., and Dorn, J.E., in Quantitative Relation between Properties and Microstructure, edited by Brandon, D.G. and Rosen, A. (Israel University Press, Jerusalem, 1969), p. 225.Google Scholar
32.Sherby, O.D. and Burke, P.M., Prog. Mater. Sci. 13, 325 (1968).CrossRefGoogle Scholar
33.Mohamed, F.A. and Langdon, T.G., Acta Metall. 22, 779 (1974).CrossRefGoogle Scholar
34.Sherby, O.D., Klundt, R.H., and Miller, A.K., Metall. Trans. A 8A, 843 (1977).CrossRefGoogle Scholar
35.Lundy, T.S. and Murdock, J.F., J. Appl. Phys. 33, 1671 (1962).CrossRefGoogle Scholar
36.Monkman, F.C. and Grant, N.J., Proc. ASTM 56, 593 (1956).Google Scholar
37.Dobes, F. and Milicka, K., Met. Sci. 10, 382 (1976).CrossRefGoogle Scholar
38.Nardone, V.C., Matejczyk, D.E., and Tien, J.K., Metall. Trans. A 14A, 1435 (1983).CrossRefGoogle Scholar
39.Nardone, V.C., Kimmerle, W.L., and Tien, J.K., Metall. Trans. A. 17A, 1577 (1986).CrossRefGoogle Scholar
40.Ma, Z.Y. and Tjong, S.C., Mater. Sci. Eng. A264, 177 (1999).CrossRefGoogle Scholar
41.Matejczyk, D.E., Zhuang, Y., and Tien, J.K., Metall. Trans. A. 14A, 241 (1983).CrossRefGoogle Scholar