Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T13:19:33.713Z Has data issue: false hasContentIssue false

Stabilizing new bismuth compounds in thin film form

Published online by Cambridge University Press:  10 November 2016

Aiping Chen*
Affiliation:
Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Honghui Zhou
Affiliation:
Department of Materials Science and Engineering, NSF Center for Advanced Materials and Smart Structures, North Carolina State University, Raleigh, North Carolina 27695, USA
Yuanyuan Zhu
Affiliation:
Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
Leigang Li
Affiliation:
Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
Wenrui Zhang
Affiliation:
Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
Jagdish Narayan
Affiliation:
Department of Materials Science and Engineering, NSF Center for Advanced Materials and Smart Structures, North Carolina State University, Raleigh, North Carolina 27695, USA
Haiyan Wang
Affiliation:
Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA; and School of Materials Engineering, Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
Quanxi Jia*
Affiliation:
Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
*
a) Address all correspondence to these authors. e-mail: [email protected]
b) e-mail: [email protected]
Get access

Abstract

Growth of unexpected phases from a composite target of BiFeO3:BiMnO3 and/or BiFeO3:BiCrO3 has been explored using pulsed laser deposition. The Bi2FeMnO6 tetragonal phase can be grown directly on SrTiO3 (STO) substrate, while two phases (S1 and S2) were found to grow on LaAlO3 (LAO) substrates with narrow growth windows. However, introducing a thin CeO2 buffer layer effectively broadens the growth window for the pure S1 phase, regardless of the substrate. Moreover, we discovered two new phases (X1 and X2) when growing on STO substrates using a BiFeO3:BiCrO3 target. Pure X2 phase can be obtained on CeO2-buffered STO and LAO substrates. This work demonstrates that some unexpected phases can be stabilized in a thin film form by using composite perovskite BiRO3 (R = Cr, Mn, Fe, Co, Ni) targets. Furthermore, it also indicates that CeO2 can serve as a general template for the growth of bismuth compounds with potential room-temperature multiferroicity.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Narayan, J., Biunno, N., Singh, R., Holland, O.W., and Auciello, O.: Formation of thin superconducting films by the laser processing method. Appl. Phys. Lett. 51, 1845 (1987).Google Scholar
Allibe, J., Infante, I.C., Fusil, S., Bouzehouane, K., Jacquet, E., Deranlot, C., Bibes, M., and Barthelemy, A.: Coengineering of ferroelectric and exchange bias properties in BiFeO3 based heterostructures. Appl. Phys. Lett. 95, 182503 (2009).Google Scholar
Chen, A.P., Khatkhatay, F., Zhang, W., Jacob, C., Jiao, L., and Wang, H.Y.: Strong oxygen pressure dependence of ferroelectricity in BaTiO3/SrRuO3/SrTiO3 epitaxial heterostructures. J. Appl. Phys. 114, 124101 (2013).Google Scholar
Su, Q., Cho, S.M., Bi, Z.X., Chen, A.P., and Wang, H.Y.: Enhanced electrochemical properties of Bi-layer La0.5Sr0.5CoO3-delta cathode prepared by a hybrid method. Electrochim. Acta 56, 3969 (2011).Google Scholar
Li, Z., You, L., Yang, Z., Tan, H.R., Ren, P., Chen, X.F., Pan, J.S., Wang, J.L., Wang, L., Bosman, M., Zhu, W.G., and Dong, Z.L.: Multiferroicity in manganite/titanate superlattices determined by oxygen pressure-mediated cation defects. J. Appl. Phys. 113, 164302 (2013).Google Scholar
Singh, S., Xiong, J., Chen, A.P., Fitzsimmons, M.R., and Jia, Q.X.: Field-dependent magnetization of BiFeO3 in an ultrathin La0.7Sr0.3MnO3/BiFeO3 superlattice. Phys. Rev. B: Condens. Matter Mater. Phys. 92, 224405 (2015).Google Scholar
Yadav, A.K., Nelson, C.T., Hsu, S.L., Hong, Z., Clarkson, J.D., Schlepuetz, C.M., Damodaran, A.R., Shafer, P., Arenholz, E., Dedon, L.R., Chen, D., Vishwanath, A., Minor, A.M., Chen, L.Q., Scott, J.F., Martin, L.W., and Ramesh, R.: Observation of polar vortices in oxide superlattices. Nature 530, 198 (2016).Google Scholar
Chen, A.P., Bi, Z.X., Tsai, C.F., Lee, J., Su, Q., Zhang, X.H., Jia, Q.X., MacManus-Driscoll, J.L., and Wang, H.Y.: Tunable low-field magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater. 21, 2423 (2011).Google Scholar
Khatkhatay, F., Chen, A.P., Lee, J.H., Zhang, W.R., Abdel-Raziq, H., and Wang, H.Y.: Ferroelectric properties of vertically aligned nanostructured BaTiO3–CeO2 thin films and their integration on silicon. ACS Appl. Mater. Interfaces 5, 12541 (2013).Google Scholar
Zhang, W.R., Chen, A.P., Jian, J., Zhu, Y.Y., Chen, L., Lu, P., Jia, Q.X., MacManus-Driscoll, J.L., Zhang, X.H., and Wang, H.Y.: Strong perpendicular exchange bias in epitaxial La0.7Sr0.3MnO3:BiFeO3 nanocomposite films through vertical interfacial coupling. Nanoscale 7, 13808 (2015).Google Scholar
Aimon, N., Choi, H.K., Sun, X.Y., Kim, D.H., and Ross, C.A.: Templated self-assembly of functional oxide nanocomposites. Adv. Mater. 26, 3063 (2014).CrossRefGoogle ScholarPubMed
Stratulat, S.M., Lu, X.L., Morelli, A., Hesse, D., Erfurth, W., and Alexe, M.: Nucleation-induced self-assembly of multiferroic BiFeO3–CoFe2O4 nanocomposites. Nano Lett. 13, 3884 (2013).CrossRefGoogle ScholarPubMed
Zheng, H.M., Straub, F., Zhan, Q., Yang, P.L., Hsieh, W.K., Zavaliche, F., Chu, Y.H., Dahmen, U., and Ramesh, R.: Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 2747 (2006).Google Scholar
Liu, H.J., Tra, V.T., Chen, Y.J., Huang, R., Duan, C.G., Hsieh, Y.H., Lin, H.J., Lin, J.Y., Chen, C.T., Ikuhara, Y., and Chu, Y.H.: Large magnetoresistance in magnetically coupled SrRuO3–CoFe2O4 self-assembled nanostructures. Adv. Mater. 25, 4753 (2013).Google Scholar
Zhang, W.R., Li, L.G., Lu, P., Fan, M., Su, Q., Khatkhatay, F., Chen, A.P., Jia, Q.X., Zhang, X.H., MacManus-Driscoll, J.L., and Wang, H.Y.: Perpendicular exchange-biased magnetotransport at the vertical heterointerfaces in La0.7Sr0.3MnO3:NiO nanocomposites. ACS Appl. Mater. Interfaces 7, 21646 (2015).Google Scholar
Zhang, W.R., Chen, A.P., Bi, Z.K., Jia, Q.X., MacManus-Driscoll, J.L., and Wang, H.Y.: Interfacial coupling in heteroepitaxial vertically aligned nanocomposite thin films: From lateral to vertical control. Curr. Opin. Solid State Mater. Sci. 18, 6 (2014).Google Scholar
Chen, A.P., Hu, J-M., Lu, P., Yang, T.N., Zhang, W., Li, L., Ahmed, T., Enriquez, E., Weigand, M., Su, Q., Wang, H.Y., Zhu, J-X., MacManus-Driscoll, J.L., Chen, L.Q., Yarotski, D., and Jia, Q.X.: Role of scaffold network in controlling strain and functionalities of nanocomposite films. Sci. Adv. 2, e1600245 (2016).Google Scholar
MacManus-Driscoll, J.L.: Self-assembled heteroepitaxial oxide nanocomposite thin film structures: Designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035 (2010).Google Scholar
Chen, A.P., Zhou, H.H., Bi, Z.X., Zhu, Y.Y., Luo, Z.P., Bayraktaroglu, A., Phillips, J., Choi, E.M., MacManus-Driscoll, J.L., Pennycook, S.J., Narayan, J., Jia, Q.X., Zhang, X.H., and Wang, H.Y.: A new class of room-temperature multiferroic thin films with bismuth-based supercell structure. Adv. Mater. 25, 1028 (2013).CrossRefGoogle ScholarPubMed
Zhu, Y.Y., Chen, A.P., Zhou, H.H., Zhang, W.R., Narayan, J., MacManus-Driscoll, J.L., Jia, Q.X., and Wang, H.Y.: Research Updates: Epitaxial strain relaxation and associated interfacial reconstructions: The driving force for creating new structures with integrated functionality. APL Mater. 1, 050702 (2013).Google Scholar
Li, L.G., Zhang, W.R., Khatkhatay, F., Jian, J., Fan, M., Su, Q., Zhu, Y.Y., Chen, A.P., Lu, P., Zhang, X.H., and Wang, H.Y.: Strain and interface effects in a novel Bismuth-based self-assembled supercell structure. ACS Appl. Mater. Interfaces 7, 11631 (2015).CrossRefGoogle Scholar
Choi, E.M., Patnaik, S., Weal, E., Sahonta, S.L., Wang, H., Bi, Z., Xiong, J., Blamire, M.G., Jia, Q.X., and MacManus-Driscoll, J.L.: Strong room temperature magnetism in highly resistive strained thin films of BiFe0.5Mn0.5O3 . Appl. Phys. Lett. 98, 012509 (2011).Google Scholar
Miao, J., Zhang, X., Zhan, Q., Jiang, Y., and Chew, K.H.: Bi-relaxation behaviors in epitaxial multiferroic double-perovskite BiFe0.5Mn0.5O3/CaRuO3 heterostructures. Appl. Phys. Lett. 99, 062905 (2011).Google Scholar
Liu, P., Cheng, Z.X., Du, Y., Feng, L.Y., Fang, H., Wang, X.L., and Dou, S.X.: Anisotropy of crystal growth mechanisms, dielectricity, and magnetism of multiferroic Bi2FeMnO6 thin films. J. Appl. Phys. 113, 17D904 (2013).Google Scholar
Bi, L., Taussig, A.R., Kim, H.S., Wang, L., Dionne, G.F., Bono, D., Persson, K., Ceder, G., and Ross, C.A.: Structural, magnetic, and optical properties of BiFeO3 and Bi2FeMnO6 epitaxial thin films: An experimental and first-principles study. Phys. Rev. B: Condens. Matter Mater. Phys. 78, 104106 (2008).Google Scholar
Zhao, H.Y., Kimura, H., Cheng, Z.X., Wang, X.L., and Nishida, T.: Room temperature multiferroic properties of Nd:BiFeO3/Bi2FeMnO6 bilayered films. Appl. Phys. Lett. 95, 232904 (2009).Google Scholar
Choi, E.M., Fix, T., Kursumovic, A., Kinane, C.J., Arena, D., Sahonta, S.L., Bi, Z.X., Xiong, J., Yan, L., Lee, J.S., Wang, H.Y., Langridge, S., Kim, Y.M., Borisevich, A.Y., MacLaren, I., Ramasse, Q.M., Blamire, M.G., Jia, Q.X., and MacManus-Driscoll, J.L.: Room temperature ferrimagnetism and ferroelectricity in strained, thin films of BiFe0.5Mn0.5O3 . Adv. Funct. Mater. 24, 7478 (2014).Google Scholar
Choi, E.M., Kleibeuker, J.E., Fix, T., Xiong, J., Kinane, C.J., Arena, D., Langridge, S., Chen, A.P., Bi, Z.X., Lee, J.H., Wang, H.Y., Jia, Q.X., Blamire, M.G., and MacManus-Driscoll, J.L.: Interface-Coupled BiFeO3/BiMnO3 superlattices with magnetic transition temperature up to 410 K. Adv. Mater. Interfaces 3, 1500597 (2016).Google Scholar
Azuma, M., Takata, K., Saito, T., Ishiwata, S., Shimakawa, Y., and Takano, M.: Designed ferromagnetic, ferroelectric Bi2NiMnO6 . J. Am. Chem. Soc. 127, 8889 (2005).CrossRefGoogle ScholarPubMed
Nechache, R., Carignan, L.P., Gunawan, L., Harnagea, C., Botton, G.A., Menard, D., and Pignolet, A.: Epitaxial thin films of multiferroic Bi2FeCrO6 with B-site cationic order. J. Mater. Res. 22, 2102 (2007).Google Scholar
Nechache, R., Harnagea, C., Carignan, L.P., Gautreau, O., Pintilie, L., Singh, M.P., Menard, D., Fournier, P., Alexe, M., and Pignolet, A.: Epitaxial thin films of the multiferroic double perovskite Bi2FeCrO6 grown on (100)-oriented SrTiO3 substrates: Growth, characterization, and optimization. J. Appl. Phys. 105, 061621 (2009).Google Scholar
Li, S., AlOtaibi, B., Huang, W., Mi, Z.T., Serpone, N., Nechache, R., and Rosei, F.: Epitaxial Bi2FeCrO6 multiferroic thin film as a new visible light absorbing photocathode material. Small 11, 4018 (2015).Google Scholar
Lotnyk, A., Senz, S., and Hesse, D.: Epitaxial growth of TiO2 thin films on SrTiO3, LaAlO3 and yttria-stabilized zirconia substrates by electron beam evaporation. Thin Solid Films 515, 3439 (2007).Google Scholar
Park, B.H., Huang, J.Y., Li, L.S., and Jia, Q.X.: Role of atomic arrangements at interfaces on the phase control of epitaxial TiO2 films. Appl. Phys. Lett. 80, 1174 (2002).Google Scholar
Chen, A.P., Bi, Z.X., Zhang, W.R., Jian, J., Jia, Q.X., and Wang, H.Y.: Textured metastable VO2 (B) thin films on SrTiO3 substrates with significantly enhanced conductivity. Appl. Phys. Lett. 104, 071909 (2014).Google Scholar
Jian, J., Chen, A.P., Zhang, W.R., and Wang, H.Y.: Sharp semiconductor-to-metal transition of VO2 thin films on glass substrates. J. Appl. Phys. 114, 244301 (2013).CrossRefGoogle Scholar
Yang, T.H., Aggarwal, R., Gupta, A., Zhou, H.H., Narayan, R.J., and Narayan, J.: Semiconductor-metal transition characteristics of VO2 thin films grown on c- and r-sapphire substrates. J. Appl. Phys. 107, 053514 (2010).Google Scholar
Gupta, A., Aggarwal, R., Gupta, P., Dutta, T., Narayan, R.J., and Narayan, J.: Semiconductor to metal transition characteristics of VO2 thin films grown epitaxially on Si(001). Appl. Phys. Lett. 95, 111915 (2009).Google Scholar
Chen, A.P., Long, H., Li, X.C., Li, Y.H., Yang, G., and Lu, P.X.: Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition. Vacuum 83, 927 (2009).Google Scholar
Golalikhani, M., Lei, Q.Y., Chen, G., Spanier, J.E., Ghassemi, H., Johnson, C.L., Taheri, M.L., and Xi, X.X.: Stoichiometry of LaAlO3 films grown on SrTiO3 by pulsed laser deposition. J. Appl. Phys. 114, 027008 (2013).Google Scholar
Liu, G.Z., Lei, Q.Y., and Xi, X.X.: Stoichiometry of SrTiO3 films grown by pulsed laser deposition. Appl. Phys. Lett. 100, 202902 (2012).CrossRefGoogle Scholar
You, L., Chua, N.T., Yao, K., Chen, L., and Wang, J.L.: Influence of oxygen pressure on the ferroelectric properties of epitaxial BiFeO3 thin films by pulsed laser deposition. Phys. Rev. B: Condens. Matter Mater. Phys. 80, 024105 (2009).CrossRefGoogle Scholar
Warusawithana, M.P., Richter, C., Mundy, J.A., Roy, P., Ludwig, J., Paetel, S., Heeg, T., Pawlicki, A.A., Kourkoutis, L.F., Zheng, M., Lee, M., Mulcahy, B., Zander, W., Zhu, Y., Schubert, J., Eckstein, J.N., Muller, D.A., Hellberg, C.S., Mannhart, J., and Schlom, D.G.: LaAlO3 stoichiometry is key to electron liquid formation at LaAlO3/SrTiO3 interfaces. Nat. Commun. 4, 2351 (2013).Google Scholar
Long, H., Yang, G., Chen, A.P., Li, Y.H., and Lu, P.X.: Growth and characteristics of laser deposited anatase and rutile TiO2 films on Si substrates. Thin Solid Films 517, 745 (2008).Google Scholar
Srivastava, A., Rotella, H., Saha, S., Pal, B., Kalon, G., Mathew, S., Motapothula, M., Dykas, M., Yang, P., Okunishi, E., Sarma, D.D., and Venkatesan, T.: Selective growth of single phase VO2(A, B, and M) polymorph thin films. APL Mater. 3, 026101 (2015).Google Scholar
Bea, H., Bibes, M., Barthelemy, A., Bouzehouane, K., Jacquet, E., Khodan, A., Contour, J.P., Fusil, S., Wyczisk, F., Forget, A., Lebeugle, D., Colson, D., and Viret, M.: Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films. Appl. Phys. Lett. 87, 072508 (2005).Google Scholar
Lu, X.J., Howard, J.W., Chen, A.P., Zhu, J.L., Li, S., Wu, G., Dowden, P., Xu, H.W., Zhao, Y.S., and Jia, Q.X.: Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries. Adv. Sci. 3, 1500359 (2016).Google Scholar
Chen, A.P., Bi, Z.X., Jia, Q.X., MacManus-Driscoll, J.L., and Wang, H.Y.: Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films. Acta Mater. 61, 2783 (2013).Google Scholar
Kan, D.S. and Shimakawa, Y.: Controlled cation stoichiometry in pulsed laser deposition-grown BaTiO3 epitaxial thin films with laser fluence. Appl. Phys. Lett. 99, 081907 (2011).Google Scholar
Kobayashi, S., Tokuda, Y., Ohnishi, T., Mizoguchi, T., Shibata, N., Sato, Y., Ikuhara, Y., and Yamamoto, T.: Cation off-stoichiometric SrMnO3-delta thin film grown by pulsed laser deposition. J. Mater. Sci. 46, 4354 (2011).Google Scholar
Dowden, P.C., Bi, Z., and Jia, Q.X.: Method for controlling energy density for reliable pulsed laser deposition of thin films. Rev. Sci. Instrum. 85, 025111 (2014).Google Scholar
Zhang, W.R., Li, M.T., Chen, A.P., Li, L.G., Zhu, Y.Y., Xia, Z.H., Lu, P., Boullay, P., Wu, L.J., Zhu, Y.M., MacManus-Driscoll, J.L., Jia, Q.X., Zhou, H.H., Narayan, J., Zhang, X.H., and Wang, H.Y.: Two-dimensional layered oxide structures tailored by self assembled layer stacking via interfacial strain. ACS Appl. Mater. Interfaces 8, 16845 (2016).Google Scholar
Chen, Z.H., Luo, Z.L., Huang, C.W., Qi, Y.J., Yang, P., You, L., Hu, C.S., Wu, T., Wang, J.L., Gao, C., Sritharan, T., and Chen, L.: Low-symmetry monoclinic phases and polarization rotation path mediated by epitaxial strain in multiferroic BiFeO3 thin films. Adv. Funct. Mater. 21, 133 (2011).Google Scholar
Mazumdar, D., Shelke, V., Iliev, M., Jesse, S., Kumar, A., Kalinin, S.V., Baddorf, A.P., and Gupta, A.: Nanoscale switching characteristics of nearly tetragonal BiFeO3 thin films. Nano Lett. 10, 2555 (2010).Google Scholar
Bea, H., Dupe, B., Fusil, S., Mattana, R., Jacquet, E., Warot-Fonrose, B., Wilhelm, F., Rogalev, A., Petit, S., Cros, V., Anane, A., Petroff, F., Bouzehouane, K., Geneste, G., Dkhil, B., Lisenkov, S., Ponomareva, I., Bellaiche, L., Bibes, M., and Barthelemy, A.: Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009).Google Scholar