Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T09:59:30.198Z Has data issue: false hasContentIssue false

Sputtered YBCO films on metal substrates

Published online by Cambridge University Press:  31 January 2011

E. Yin
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
M. Rubin
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
M. Dixon
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
Get access

Abstract

Magnetron sputtering was used to deposit superconducting YBCO thin films on four polycrystalline metal substrates. Yttrium-stabilized zirconia (YSZ) and silver were used as buffer layers. The thermal expansion coefficient of the substrate was apparently correlated to the properties of the superconductor. Auger depth profiles showed that the YSZ buffer blocked diffusion of most metal elements from the substrate. Nevertheless, contamination of the films depressed Tc to 81 K on Hastelloy × from 87 K on single-crystal strontium titanate. The films on metal substrates were c-axis oriented, but with random rotation in the a-b plane and smaller grain size than epitaxial films on single crystals. The weak links from these factors restrict Jc to 104 A/cm2 at 40 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Narumi, E., Song, L. W., Yang, F., Patel, S., Kao, Y. H., and Shaw, D. T., Appl. Phys. Lett. 56, 2483 (1990).CrossRefGoogle Scholar
2.Witanachchi, S., Patel, S., Zhu, Y. Z., Kwok, H. S., and Shaw, D. T., J. Mater. Res. 5, 717 (1990).CrossRefGoogle Scholar
3.Saitoh, J., Fukitomi, M., Tanaka, Y., Asano, T., Maeda, H., and Takahara, H., Jpn. J. Appl. Phys. 29, LI 117 (1990).Google Scholar
4.Reade, R. E., Mao, X. L., and Russo, R. E., Appl. Phys. Lett. 59, 739 (1991).Google Scholar
5.Fukitomi, M., Machida, J., Tanaka, Y., Asano, T., Wada, H., and Maeda, H., in Mater. Res. Soc. Int. Mtg. Adv. Mater., edited by Kitazawa, K. and Tachikawa, K. 6, 863 (1989).Google Scholar
6.Fukitomi, M., Tanaka, Y., Asano, T., Maeda, H., and Takahara, H., in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Christen, D., Narayan, J., and Schneemeyer, L. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990), p. 1197.Google Scholar
7.Ozaki, M., Harada, N., Akashita, S., and Chang, J-C., in Science and Technology of Thin Film Superconductors, edited by McDonnell, R. D. and Wolf, S. A. (Conf. Sci. Tech. of Thin-Film Super-conductors Proa, Colorado Springs, CO, 1988), p. 363.Google Scholar
8.Newman, N., Char, K., Garrison, S. M., Barton, R. W., Taber, R. C., Eom, C. B., Geballe, T. H., and Wilkens, B., Appl. Phys. Lett. 57, 520 (1990).Google Scholar
9.Garrison, S. M., Newman, N., Cole, B. F., Char, K., and Barton, R. W., Appl. Phys. Lett. 58, 2168 (1991).Google Scholar
10. Data from manufacturer.Google Scholar
11.Hashimoto, T., Fueki, K., Kishi, A., Azumi, T., and Koinuma, H., Jpn. J. Appl. Phys. 27, L214 (1988).Google Scholar