Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T13:16:30.990Z Has data issue: false hasContentIssue false

The spontaneous polarization as evidence for lithium disordering in LiNbO3

Published online by Cambridge University Press:  31 January 2011

Dunbar P. Birnie III
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
Get access

Abstract

The ferroelectric to paraelectric phase transition in lithium niobate is examined. The present study focuses on the microscopic mechanism for this phase transition. Literature reports that give insight into this mechanism are reviewed. Two alternate mechanisms for this second order transition have been discussed previously. The phase transition has been proposed to occur by either (a) cooperative displacement of Li ions or (b) statistical disordering of Li between two octahedral sites in the structure. The present study develops a general Landau expression for the second order phase transition. The spontaneous polarization of the lattice is used as an indicator of the extent of transformation. Then both displacement and disordering models are explored. These are compared with the observed spontaneous polarization data. It is concluded that the spontaneous polarization data are indicative of a Li disordering model, rather than a Li displacement model.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Abouelleil, M. M. and Leonberger, F. J., J. Am. Ceram. Soc. 72, 13111321 (1989).Google Scholar
2Weis, R. S. and Gaylord, T. K., Appl. Phys. A37, 191203 (1985).CrossRefGoogle Scholar
3Tsai, C. S., Jpn. J. Appl. Phys. 19 (Suppl. 1), 661665 (1980).CrossRefGoogle Scholar
4Johnston, W. D. and Kaminow, I. P., Phys. Rev. 168, 10451054 (1968).CrossRefGoogle Scholar
5Miller, R. C. and Savage, A., Appl. Phys. Lett. 9, 169171 (1966).CrossRefGoogle Scholar
6Bergmann, J. G., Ashkin, A., Ballman, A. A., Dziedzic, J. M., Levinstein, H. J., and Smith, R. G., Appl. Phys. Lett. 12, 9294 (1968).Google Scholar
7Carruthers, J. R., Peterson, G. E., Grasso, M., and Bridenbaugh, P. M., J. Appl. Phys. 42, 18461851 (1971).CrossRefGoogle Scholar
8Holman, R. L., “Novel Uses of Gravimetry in the Processing of Crystalline Ceramics”, in Materials Science Research (Plenum, New York, 1979), Vol. 2.Google Scholar
9Boyer, S. G. and Birnie, D. P., III, “Investigation of the Nb-Rich Phase Boundary of LiNbO3”, Ceramics and Inorganic Crystals for Optics, Electro-Optics and Non-Linear Conversion, 73–80, SPIE Proc. 968 (1988).CrossRefGoogle Scholar
10Lerner, P., Legras, C., and Dugas, J. P., J. Cryst. Growth 3, 231235 (1968).Google Scholar
11O'Bryan, H. M., Gallagher, P. K., and Brandle, C. D., J. Am. Ceram. Soc. 68, 493496 (1985).CrossRefGoogle Scholar
12Peterson, G. E. and Carruthers, J. R., J. Solid State Chem. 1, 9899 (1969).Google Scholar
13Svaasand, L. O., Ericksrud, M., Nakken, G., and Grande, A. P., J. Cryst. Growth 22, 230232 (1974).CrossRefGoogle Scholar
14Scott, B. A. and Burns, G., J. Am. Ceram. Soc. 55, 225230 (1972).Google Scholar
15Birnie, D. P., III, “Model for the Ferroelectric Transition in Nonstoichiometric LiNbO3 and LiTaO3” (to be published).Google Scholar
16Abrahams, S. C., Levinstein, H. J., and Reddy, J. M., J. Phys. Chem. Solids 27, 10191026 (1966).CrossRefGoogle Scholar
17Servoin, J. L. and Gervais, F., Ferroelectrics 25, 609612 (1980).CrossRefGoogle Scholar
18Lines, M. E., Phys. Rev. B2, 698705 (1970).CrossRefGoogle Scholar
19Chowdhury, M. R., Peckham, G. E., and Saunderson, D. H., J. Phys. C 11, 16711683 (1978).CrossRefGoogle Scholar
20Okamoto, Y., Wang, P., and Scott, J. F., Phys. Rev. B32, 67876792 (1985).CrossRefGoogle Scholar
21Servoin, J. L. and Gervais, F., Solid State Commun. 31, 387391 (1979).CrossRefGoogle Scholar
22Ivanova, S. V., Gorelik, V. S., and Strukov, B. A., Ferroelectrics 21, 563564 (1978).Google Scholar
23Jayaraman, A. and Ballman, A. A., J. Appl. Phys. 60, 12081210 (1986).Google Scholar
24Samara, G. A., Ferroelectrics 73, 145159 (1987).Google Scholar
25Umarov, B. S., Vetelino, J. F., Abdullaev, N. S., and Anikiev, A. A., Solid State Commun. 36, 465468 (1980).CrossRefGoogle Scholar
26Tomeno, I. and Matsumura, S., J. Phys. Soc. of Japan 56, 163177 (1987).Google Scholar
27Glass, A. M., Phys. Rev. 172, 564571 (1968).Google Scholar
28Abrahams, S. C., Buehler, E., Hamilton, W. C., and Laplaca, S. J., J. Phys. Chem. Solids 34, 521532 (1973).CrossRefGoogle Scholar
29Samuelsen, E. J. and Grande, A. P., Z. Phys. B24, 207210 (1976).Google Scholar
30Penna, A. F., Chaves, A., and Porto, S. P. S., Solid State Commun. 19, 491494 (1976).CrossRefGoogle Scholar
31Raptis, C., Phys. Rev. B38, 1000710019 (1988).Google Scholar
32Tomeno, I. and Matsumura, S., Phys. Rev. B38, 606614 (1988).CrossRefGoogle Scholar
33Zhang, M. and Scott, J. F., Phys. Rev. B34, 18801883 (1986).CrossRefGoogle Scholar
34Rao, C. N. R. and Rao, K. J., Phase Transitions in Solids (McGraw-Hill, New York, 1978).Google Scholar
35Kroger, F. A., The Chemistry of Imperfect Crystals (North Holland, Amsterdam, 1964).Google Scholar
36Birnie, D. P., III, “Determination of the Lithium Frenkel Energy in Lithium Tantalate”, submitted to J. Appl. Phys.Google Scholar
37Bragg, W. L. and Williams, E. J., Proc. R. Soc. London A145, 699730 (1934).Google Scholar
38Sonin, A. S. and Lomova, L. B., Sov. Phys. Solid State 9, 26072609 (1968).Google Scholar
39Abrahams, S. C. and Marsh, P., Acta Cryst. B42, 6168 (1986).CrossRefGoogle Scholar
40Smyth, D. M., Ferroelectrics 50, 93102 (1983).CrossRefGoogle Scholar
41Limb, Y., Cheng, K. W., and Smyth, D. M., Ferroelectrics 38, 813816 (1981).CrossRefGoogle Scholar