Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T22:54:52.076Z Has data issue: false hasContentIssue false

Spiky niobium oxide nanoparticles through hydrothermal synthesis

Published online by Cambridge University Press:  19 June 2017

Teruaki Fuchigami*
Affiliation:
Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan
Ken-ichi Kakimoto
Affiliation:
Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan; and Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Nagoya 466-8555, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The development of ceramic nanomaterials with unique structure is necessary for discovery of novel property. We developed a novel niobium oxide nanoparticles with a spiky morphology. The spiky structure was composed of two kinds of component: niobium oxide hydrate sphere core and niobium pentoxide nanorods. These spiky niobium oxide nanoparticles are easily synthesized by hydrothermal treatment of niobium oxalate solution at 200 °C for 2 h, and their particle size could be tuned from 80 to 300 nm with 5–10 nm of nanorod on the surface by adjusting niobium concentration in the niobium oxalate solution. The band gap energy of the spiky nanoparticles was around 3.4 eV, and the spiky niobium oxide nanoparticles showed a light absorption in a wide wave length range from 380 to 700 nm. The niobium oxide nanoparticles are applicable as both solid acid catalyst and photocatalyst because of their spiky and two-layer structure.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Nahum Travitzky

References

REFERENCES

Kumara, B. and Kim, S.W.: Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy 1, 342355 (2012).CrossRefGoogle Scholar
Mimura, K. and Kato, K.: Enhanced dielectric properties of BaTiO3 nanocube assembled film in metal–insulator–metal capacitor structure. Appl. Phys. Express 7, 061501 (2014).CrossRefGoogle Scholar
Taylor-Pashow, K.M.L., Rocca, J.D., Huxford, R.C., and Lin, W.: Hybrid nanomaterials for biomedical applications. Chem. Commun. 46, 58325849 (2010).CrossRefGoogle ScholarPubMed
Lv, J., Kako, T., Li, Z., Zou, Z., and Ye, J.: Synthesis and photocatalytic activities of NaNbO3 rods modified by In2O3 nanoparticles. J. Phys. Chem. C 114, 61576162 (2010).CrossRefGoogle Scholar
Uchida, S., Inoue, Y., Fujishiro, Y., and Sato, T.: Hydrothermal synthesis of K4Nb6O17 . J. Mater. Sci. 33, 5125 (1998).CrossRefGoogle Scholar
Lu, C.H., Lo, S.Y., and Lin, H.C.: Hydrothermal synthesis of nonlinear optical potassium niobate ceramic powder. Mater. Lett. 34, 172176 (1998).CrossRefGoogle Scholar
Liu, J.F., Li, X.L., and Li, Y.D.: Novel synthesis of polymorphous nanocrystalline KNbO3 by a low temperature solution method. J. Nanosci. Nanotechnol. 2, 617 (2002).CrossRefGoogle ScholarPubMed
Lee, S., Park, T., Choi, G., Koo, K., and Kim, W.: Effects of KOH/BaTi and Ba/Ti ratios on synthesis of BaTiO3 powder by coprecipitation/hydrothermal reaction. Mater. Chem. Phys. 82, 742 (2003).CrossRefGoogle Scholar
Sehgal, A., Lalatonne, Y., Berret, J-F., and Morvan, M.: Precipitation-redispersion of cerium oxide nanoparticles with poly(acrylic acid): Toward stable dispersions. Langmuir 21, 93599364 (2005).CrossRefGoogle ScholarPubMed
Burda, C., Chen, X.B., Narayaman, R., and El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 10251102 (2005).CrossRefGoogle ScholarPubMed
Zhang, L. and Zhu, Y.J.: Microwave-assisted solvothermal synthesis of AlOOH hierarchically nanostructured microspheres and their transformation to γ-Al2O3 with similar morphologies. J. Phys. Chem. C 112, 16764 (2008).CrossRefGoogle Scholar
Wang, Z.L. and Song, J.H.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006).CrossRefGoogle ScholarPubMed
Polshettiwar, V., Baruwati, B., and Varma, R.S.: Self-assembly of metal oxides into three-dimensional nanostructures: Synthesis and application in catalysis. ACS Nano 3(3), 728736 (2009).CrossRefGoogle ScholarPubMed
Xie, X., Li, Y., Liu, Z-Q., Haruta, M., and Shen, W.: Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746749 (2011).CrossRefGoogle Scholar
Wang, Y.D., Yang, L.F., Zhou, Z.L., Li, Y.F., and Wu, X.H.: Effects of calcination temperature on latice constants and gas sensing properties of Nb2O5 . Mater. Lett. 49, 277 (2001).CrossRefGoogle Scholar
Carniti, P., Gervasini, A., and Marzo, M.: Dispersed NbO x catalytic phases in silica matrixes: Influence of niobium concentration and preparative route. J. Phys. Chem. C 112, 14064 (2008).CrossRefGoogle Scholar
Mujawar, S.H., Inamdar, A.I., Patil, S.B., and Patil, P.S.: Electrochromic properties of spray-deposited niobium oxide thin films. Solid State Ionics 177, 3333 (2006).CrossRefGoogle Scholar
Jose, R., Thavasi, V., and Ramakrishna, S.: Metal oxides for dyesensitized solar cells. J. Am. Ceram. Soc. 92, 289 (2009).CrossRefGoogle Scholar
Ahn, K.S., Kang, M.S., Lee, J.K., Shin, B.C., and Lee, J.W.: Enhanced electron diffusion length of mesoporous TiO2 film by using Nb2O5 energy barrier for dye-sensitized solar cells. Appl. Phys. Lett. 89, 013103 (2006).CrossRefGoogle Scholar
Mackey, A.C., Karlinsey, R.L., Chu, T.G., MacPherson, M., and Alge, D.L.: Development of niobium oxide coatings on sand-blasted titanium alloy dental implants. Mater. Sci. Appl. 3, 301305 (2012).Google Scholar
Llordés, A., Garcia, G., Gazquez, J., and Milliron, D.J.: Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323326 (2013).CrossRefGoogle ScholarPubMed
Guo, Y., Kakimoto, K., and Ohsato, H.: Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3(Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121 (2004).CrossRefGoogle Scholar
Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M.: Lead-free piezoceramics. Nature 432, 8487 (2004).CrossRefGoogle ScholarPubMed
Shrout, T.R. and Zhang, S.J.: Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19, 113126 (2007).CrossRefGoogle Scholar
Vats, G. and Vaish, R.: Selection of optimal sintering temperature of K0.5Na0.5NbO3 ceramics for electromechanical applications. J. Asian Ceram. Soc. 2, 510 (2014).CrossRefGoogle Scholar
Mohanty, D., Chaubey, G., Yourdkhani, A., Adireddy, S., Caruntu, G., and Wiley, J.: Synthesis and piezoelectric response of cubic and spherical LiNbO3 nanocrystals. RSC Adv. 2, 19131916 (2012).CrossRefGoogle Scholar
Saito, K. and Kudo, A.: Niobium-complex-based syntheses of sodium niobate nanowires possessing superior photocatalytic properties. Inorg. Chem. 49, 20172019 (2010).CrossRefGoogle ScholarPubMed
Zhu, H., Zheng, Z., Gao, X., Huang, Y., Yan, Z., Zou, J., Yin, H., Zou, Q., Kable, S.H., Zhao, J., Xi, Y., Martens, W.N., and Frost, R.L.: Structural evolution in a hydrothermal reaction between Nb2O5 and NaOH solution: From Nb2O5 grains to microporous Na2Nb2O6/3H2O fibers and NaNbO3 cubes. J. Am. Chem. Soc. 128, 23732384 (2006).CrossRefGoogle Scholar
Nakajima, K., Baba, Y., Noma, R., Kitano, M., Kondo, J.N., Hayashi, S., and Hara, M.: Nb2O5 nH2O as a heterogeneous catalyst with water-tolerant Lewis acid sites. J. Am. Chem. Soc. 133, 42244227 (2011).CrossRefGoogle ScholarPubMed
Prado, A.G.S., Bolzon, L.B., Pedroso, C.P., Moura, A.O., and Costa, L.L.: Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Appl. Catal., B 82, 219224 (2008).CrossRefGoogle Scholar
Wu, J., Li, J., , X., Zhang, L., Yao, J., Zhang, F., Huang, F., and Xu, F.: A one-pot method to grow pyrochlore H4Nb2O7-octahedron-based photocatalyst. J. Mater. Chem. 20, 19421946 (2010).CrossRefGoogle Scholar
Luo, H., Wei, M., and Wei, K.: Synthesis of Nb2O5 nanorods by a soft chemical process. J. Nanomater. 2009, 14 (2009).CrossRefGoogle Scholar
Fan, W., Zhang, Q., Deng, W., and Wang, Y.: Niobic acid nanosheets synthesized by a simple hydrothermal method as efficient brønsted acid catalysts. Chem. Mater. 25, 32773287 (2013).CrossRefGoogle Scholar
Rafique, M.Y., Pan, L., Khan, W.S., Iqbal, M.Z., Qiu, H., Farooq, M.H., Ellahi, M., and Guo, Z.: Controlled synthesis, phase formation, growth mechanism, and magnetic properties of 3-D CoNi alloy microstructures composed of nanorods. CrystEngComm 15, 53145325 (2013).CrossRefGoogle Scholar
Yin, J., Zhao, X., Xiang, L., Xia, X., and Zhang, Z.: Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles. Soft Matter 5, 46874697 (2009).CrossRefGoogle Scholar
Ye, Y., Chen, J., Ding, Q., Lin, D., Dong, R., Yang, L., and Liu, J.: Sea-urchin-like Fe3O4@C@Ag particles: An efficient SERS substrate for detection of organic pollutants. Nanoscale 5, 58875895 (2013).CrossRefGoogle ScholarPubMed
Camargo, E.R. and Kakihana, M.: Low temperature synthesis of lithium niobate powders based on water-soluble niobium malato complexes. Solid State Ionics 151, 413418 (2002).CrossRefGoogle Scholar
Murayama, T., Chen, J., Hirata, J., Matsumoto, K., and Ueda, W.: Hydrothermal synthesis of octahedra-based layered niobium oxide and its catalytic activity as a solid acid. Catal. Sci. Technol. 4, 42504257 (2014).CrossRefGoogle Scholar
Fuchigami, T. and Kakimoto, K.: Synthesis of niobium pentoxide nanoparticles in single flow supercritical water. Jpn. J. Appl. Phys. 55, 10TB06 (2016).CrossRefGoogle Scholar
Zhao, Y., Eley, C., Hu, J., Foord, J.S., Ye, L., and He, H.: Shapedependent acidity and photocatalytic activity of Nb2O5 nanocrystals with active TT (001) surface. Angew. Chem., Int. Ed. 51, 38463849 (2012).CrossRefGoogle ScholarPubMed