Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T10:05:35.468Z Has data issue: false hasContentIssue false

Spherical indentation of ductile power law materials

Published online by Cambridge University Press:  03 March 2011

Roberta Mulford
Affiliation:
NMT-15 Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Robert J. Asaro
Affiliation:
Department of Structural Engineering, University of California, San Diego, La Jolla, California 92093
Robert J. Sebring
Affiliation:
MST-7 Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

A procedure for extracting simple constitutive parameters from microindentationtests is described. The analysis used to interpret the indentation tests is based onthe analysis of the spherical indentation test developed by Hill et al. for power law materials. Indentation tests are supplemented by scanning interference microscopyof the residual indented surface profiles and a method is suggested for using the residual surface profiles to estimate the actual contact surface. This, in turn, allowsfor the construction of the entire stress versus strain curve.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brinell, J.A.Congres International des Methodes d’Essai des Materiaux de Construction(Paris), (1901), Vol. 2, pp. 8394Google Scholar
2.Meyer, E.: Z. Ver. Deutsche Ing. 52, 645 (1908).Google Scholar
3.O’Neill, H.: The hardness of metals and its measurement. In Proc. Inst. Mech. Engrs. 151, 116 (1944).Google Scholar
4.Tabor, D.Hardness of Metals (Clarendon Press, Oxford, U.K., 1951)Google Scholar
5.Follansbee, P.S. andSinclair, G.B.: Quasi-static normal indentation of an elasto-plastic half-space by a rigid sphere. I. Analysis. In Int. J. Solids Struct. 20, 81 (1984).CrossRefGoogle Scholar
6.Field, J.S. andSwain, M.V.: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).CrossRefGoogle Scholar
7.Lim, Y.L., Bushby, A.J. andChaudhri, M.: Nano and macro indentation studies of polycrystalline copper using spherical indenters. In Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 145Google Scholar
8.Alacala, J., Giannakopoulos, A.E. andSuresh, S.: Continuous measurements of load-penetration curves with spherical microindenters and the estimations of mechanical properties. J. Mater. Res. 13, 1390 (1998).CrossRefGoogle Scholar
9.Hill, R., Storakers, B. andZdunek, A.B.: A theoretical study of the Brinell hardness test, in Proc. R. Soc. London. A 423, 301 (1989).Google Scholar
10.Follansbee, P. andKocks, U.F.: A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall. 36, 81 (1988).CrossRefGoogle Scholar
11.Norbury, A.L. andSamuel, T.: The recovery and sinking-in or piling-up of material in the Brinell test, and the effect of these factors on the correlation of the Brinell with certain other hardness tests. J. Iron Steel Inst. 117, 673 (1928).Google Scholar
12.Caber, P.J., al., etA New Interferometric Profiler for Smooth and Rough Surfaces. WYCO Corp. Technical Bulletin Veeco Metrology Group, Tucson, AZ (1993)Google Scholar
13. S. Suresh: private communication (Massachusetts Institute of Technology, 2002).Google Scholar
14.Biwa, S. andStorakers, B.: An analysis of fully plastic Brinell indentation. J. Mech. Phys. Solids 43, 1303 (1995).CrossRefGoogle Scholar
15.Asaro, R.J., Benson, D. andMulford, R.N. University of California and Los Alamos National Laboratory (unpublished, 2003).Google Scholar