Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T23:51:04.307Z Has data issue: false hasContentIssue false

Spectral fingerprinting of structural defects in plasma-treated carbon nanotubes

Published online by Cambridge University Press:  03 March 2011

Nirupama Chakrapani*
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
Seamus Curran
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
Bingqing Wei
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
Pulickel M. Ajayan
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
Alvaro Carrillo
Affiliation:
Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
Ravi S. Kane
Affiliation:
Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Controlled introduction of defects into aligned multiwalled carbon nanotubes (MWCNTs) was achieved by time-dependent plasma etching. The subsequent morphological changes in MWCNTs have been fingerprinted using Raman and x-ray photoelectron spectroscopy, by which induction of defects by functionalization was confirmed. We found that the introduction of defects along the nanotube body affects all Raman vibrational modes. A systematic analysis of the relationship between D, D′, D*, and G modes leads us to believe that no one peak can be used as an accurate standard for estimation of defects in nanotubes.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wei, B.Q., Vajtai, R., Jung, Y., Ward, J., Zhang, Y., Ramanath, G., and Ajayan, P.M., Nature 416, 495 (2002).CrossRefGoogle Scholar
2.Zhang, Z.J., Wei, B.Q., Ramanath, G., and Ajayan, P.M., Appl. Phys. Lett. 77, 3764 (2000).CrossRefGoogle Scholar
3.Hirsch, A., Angew. Chem., Int. Ed. Engl. 41, 1853 (2002).3.0.CO;2-N>CrossRefGoogle Scholar
4.Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., and Haddon, R.C., Science 282, 95 (1998).CrossRefGoogle Scholar
5.Montes-Moran, M.A., Martinez, A.-Alonso, Tascon, J.M.D., and Young, R.J., Composites: Part A 32, 361 (2001).CrossRefGoogle Scholar
6.Bubert, H., Brandl, W., Kittel, S., Marginean, G., and Toma, D., Anal. Bioanal. Chem. 374, 1237 (2002).CrossRefGoogle Scholar
7.Paredes, J.I., Martinez, A.-Alonso, and Tascon, J.M.D., J. Mater. Chem. 10, 1585 (2000).CrossRefGoogle Scholar
8.Chen, Q., Dai, L., Gao, M., Huang, S., and Mau, A., J. Phys. Chem. B 105, 618 (2001).CrossRefGoogle Scholar
9.Khare, B., Meyyappan, M., Cassell, A.M., Nguyen, C.V., and Han, J., Nano. Lett. 2, 73 (2002).CrossRefGoogle Scholar
10.Huang, S. and Dai, L., J. Phys. Chem. B 106, 3543 (2002).CrossRefGoogle Scholar
11.Zhange, X., Cao, A., Wei, B.Q., Li, Y., Wei, J., Xu, C., and Wu, D., Chem. Phys. Lett. 362, 285 (2002).CrossRefGoogle Scholar
12.Li, W., Zhang, H., Wang, C., Zhang, Y., Xu, L., Zhu, K., and Xie, S., App. Phys. Lett., 70, 2684 (1997)CrossRefGoogle Scholar
13.Sveningsson, M., Morjan, R.E., Nerushen, O.A., Sato, Y., Backstrom, J., Campbell, E.E.B., and Rohmund, F., App. Phys. A. 73, 409 (2001).CrossRefGoogle Scholar
14.Paredes, J.I., Martinez, A.-Alonso, and Tascon, J.M.D., Carbon 40, 1101 (2002).CrossRefGoogle Scholar
15.Lee, S.M., Lee, Y.H., Hwag, Y.G., Hahn, J.R., and Kang, H., Phys. Rev. Lett. 82, 217 (1999).CrossRefGoogle Scholar
16.Ago, H., Kugler, T., Cacialli, F., Salaneck, W.R., Shafer, M.S.P., Windle, A.H., and Friend, R.H., J. Phys. Chem. B 103, 8116 (1999).CrossRefGoogle Scholar
17.Liu, B., Cui, Q., Yu, M., Zhou, G., Carlsten, J., Wagberg, T., and Sundqvist, B., J. Phys.: Condens. Matter 14, 11255 (2002).Google Scholar
18.Nemanich, R.J. and Solin, S.A., Phys. Rev. B 20, 392 (1979).CrossRefGoogle Scholar
19.Jishi, R.A. and Dresselhaus, G., Phys. Rev. B 26, 4514 (1982).CrossRefGoogle Scholar
20.Eklund, P.C., Holden, J.M., and Jishi, R.A., Carbon 33, 959 (1995).CrossRefGoogle Scholar
21.Thomsen, C. and Reich, S., Phys. Rev. Lett. 85, 5214 (2000).CrossRefGoogle Scholar
22.Samsonidze, G., Saito, R., Jorio, A., Souza, A.G. Filho, Pimenta, M.A., Dresselhaus, G., and Dresselhaus, M.S., Phys. Rev. Lett. 90, 27403 (2003).CrossRefGoogle Scholar
23.Saito, R., Jorio, A., Souza, A.G. Filho, Dresselhaus, G., Dresselhaus, M.S., and Pimenta, M.A., Phys. Rev. Lett. 88, 27401 (2002).CrossRefGoogle Scholar
24.Pócsik, I., Hundhausen, M., Koós, M., and Ley, L., J. Non-Cryst. Solids 227–230, 1083 (1998).CrossRefGoogle Scholar
25.Tan, P.H., Hu, C.Y., Dong, J., Shen, W., and Zhang, B., Phys. Rev. B 64, 214301 (2001).CrossRefGoogle Scholar
26.Tan, P.H., Deng, Y., and Zhao, Qian, Phys. Rev. B 58, 5435 (1998).CrossRefGoogle Scholar
27.Kawashima, Y. and Katagiri, G., Phys. Rev. B 52, 10053 (1995).CrossRefGoogle Scholar
28.Kawashima, Y. and Katagiri, G., Phys. Rev. B 59, 62 (1999).CrossRefGoogle Scholar
29.Alvarez, L., Righi, A., Rols, S., Anglaret, E., and Sauvajol, J.L., Chem. Phys. Lett. 320, 441 (2000).CrossRefGoogle Scholar
30.Tang, P.H. and Tang., Y, Appl. Phys. Lett. 75, 1524 (1999).Google Scholar
31.Rao, A.M., Jorio, A., Pimenta, M.A., Dantas, M.S.S., Saito, R., Dresselhaus, G., and Dresselhaus, M.S., Phys. Rev. Lett. 84, 1820 (2000).CrossRefGoogle Scholar
32.Ferrari, A.C. and Robertson, J., Phys. Rev. B 61, 14095 (2000).CrossRefGoogle Scholar
33.Maurin, G., Stepanek, I., Bernier, P., Colomer, J-F., Nagy, J.B., and Henn, F., Carbon 39, 1273 (2001).CrossRefGoogle Scholar
34.Tan, P.H., Hu, C.Y., Li, F., Bai, S., Hou, P.X., and Cheng, H.M., Carbon 40, 1131 (2002).CrossRefGoogle Scholar
35.Ferrari, A.C., Diam. Relat. Mater. 11, 1053 (2002).CrossRefGoogle Scholar
36.Kaster, J., Pichler, T., Kuzmany, H., Curran, S., Blau, W., Weldon, D.N., Delamesiere, M., Draper, S., and Zandbergen, H., Chem. Phys. Lett. 221, 53 (1994).CrossRefGoogle Scholar
37.Tang, P.H., An, L., Liu, L.Q., Guo, Z.X., Czerw, R., Carroll, D.L., Ajayan, P.M., Zhang, N., and Guo, H.L., Phys. Rev. B 66, 245410 (2002).Google Scholar
38.Maultzch, J., Reich, S., Thomsen, S., Webster, S., Czerw, R., Carroll, D.L., Vieira, S.M.C., Birkett, P.R., and Rego, C.A., App. Phys. Lett. 81, 2647 (2002).CrossRefGoogle Scholar
39.Carroll, D.L., Redlich, Ph., Blase, X., Charlier, J-C., Curran, S., Ajayan, P.M., Roth, S., and Ruehle, M., Phys. Rev. Lett. 81, 2332 (1998).CrossRefGoogle Scholar