Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T17:11:20.388Z Has data issue: false hasContentIssue false

Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part II. Characterization studies

Published online by Cambridge University Press:  01 November 2004

U. Anselmi-Tamburini
Affiliation:
Department Chemical Engineering and Materials Science, University of California, Davis, California 95616
J.E. Garay
Affiliation:
Department Chemical Engineering and Materials Science, University of California, Davis, California 95616
Z.A. Munir*
Affiliation:
Department Chemical Engineering and Materials Science, University of California, Davis, California 95616
A. Tacca
Affiliation:
Department of Physical Chemistry, University of Pavia, 27100 Pavia, Italy
F. Maglia
Affiliation:
Department of Physical Chemistry, University of Pavia, 27100 Pavia, Italy
G. Chiodelli
Affiliation:
IENI-CNR, Pavia Branch, 27100 Pavia, Italy
G. Spinolo
Affiliation:
Department of Physical Chemistry, University of Pavia, 27100 Pavia, Italy
*
a) Address all corrsspondence to this author. e-mail: [email protected]
Get access

Abstract

Dense fully stabilized cubic zirconia, sintered by the spark plasma sintering (SPS) method, was characterized through hardness, fracture toughness, and electrical impedance measurements. The effect of sintering temperature on hardness and fracture toughness was evaluated. Samples sintered at 1200 °C for 5 min, which had crystallite size of <100 nm, exhibited the highest hardness. Impedance measurements showed an increase in bulk contribution relative to grain boundaries as sintering temperature is increased. Calculation of the activation energy for conduction gave a value, 1.13 eV, in agreement with previously published results.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Anselmi-Tamburini, U., Garay, J., Munir, Z.A., Tacca, A., Maglia, F. and Spinolo, G.: Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies. J. Mater. Res. 19, 3255 (2004).CrossRefGoogle Scholar
2Li, W. and Gao, L.: Rapid sintering of nanocrystalline ZrO2(3Y) by spark plasma sintering. J. Eur. Ceram. Soc. 20, 2441 (2000).CrossRefGoogle Scholar
3Yu, L.G., Khor, K.A., Chan, S.H., and Chen, X.J.: In Processing and Fabrication of Advanced Materials X, Proceedings of the Tenth International Symposium on Processing and Fabrication of Advanced Materials, Indianapolis, IN, Nov. 5–8, 2001 (ASM International, Warrendale, PA, 2001), p. 33Google Scholar
4Takeuchi, T., Kondoh, I., Tamari, N., Balakrishnan, N., Nomura, K., Kageyama, H. and Takeda, Y.: Improvement of mechanical strength of 8 mol% yttria-stabalized zirconia ceramics by spark plasma sintreing. J. Electrochem. Soc. 149, A455 (2002).CrossRefGoogle Scholar
5Chen, X.J., Khor, K.A., Chan, S.H. and Yu, L.G.: Preparation yttria-stablized zirconia electrolyte by spark plasma sintering. Mater. Sci. Eng. A 341, 43 (2003).CrossRefGoogle Scholar
6Niihara, K., Morena, R. and Hasselman, D.P.H.: Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1, 13 (1982).CrossRefGoogle Scholar
7Barsoum, M.: Fundamentals of Ceramics (McGraw-Hill, New York, 1997), p. 401Google Scholar
8Cottom, B.A. and Mayo, M.J.: Fracture toughness of nanocrystalline ZrO2-3 mol% Y2O3 determined by Vickers indentation. Scripta Mater. 34, 809 (1996).CrossRefGoogle Scholar
9Bravo-Leon, A., Morikawa, Y., Kawahara, M. and Mayo, M.J.: Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Mater. 50, 4555 (2002).CrossRefGoogle Scholar
10Anstis, G.R., Chantikul, P., Lawn, B.R. and Marshall, D.: A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J. Amer. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
11Chiodelli, G. and Lupotto, P.: Experimental approach to the impedance spectroscopy technique. J. Electrochem. Soc. 138, 2703 (1991).CrossRefGoogle Scholar
12Hwang, B., Houska, C.R., Ice, G.E. and Habenschuss, A.: Residual strain gradients in a fully stabilized zirconia sample. J. Appl. Phys. 63, 5351 (1988).CrossRefGoogle Scholar
13Kitano, Y., Mori, Y., Ishitani, A. and Masaki, T.: Structural changes by mechanical and thermal stresses of 2.5-mol%-Y2O3-stabilized tetragonal ZrO2 polycrystals. J. Am. Ceram. Soc. 71, C382 (1988).CrossRefGoogle Scholar
14Kitamura, A., Kubodera, S., Yamamoto, H., Miyamoto, A. and Tsukui, T. in Hot-Isostatic Pressing: Theory and Application, edited by Koizumi, M. (Elsevier, London, U.K., 1992), p. 171CrossRefGoogle Scholar
15Gototsi, G.A., Lamonova, E.E., Furmanov, Y.A. and Savitskaya, I.M.: Zirconia crystals suitable for medicine 1. Implants. Ceram. Int. 20, 343 (1994).CrossRefGoogle Scholar
16Kwon, N.H., Kim, G.H., Song, H.S. and Lee, H.L.: Synthesis and properties of cubic zirconia-alumina composites by mechanical alloying. Mater. Sci. Eng. A 299, 185 (2001).CrossRefGoogle Scholar
17Gibson, I.R., Dransfield, G.P. and Irvine, J.T.S.: Sinterablity of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density in the ionic conductivity. J. Mater. Sci. 33, 4297 (1998).CrossRefGoogle Scholar
18Ciacchi, F.T., Nightingale, S.A. and Badwal, S.P.S.: Microwave sintering of zirconia-yttria electrolytes and measurements of their ionic conductivity. Solid State Ionics 86–88, 1167 (1996).CrossRefGoogle Scholar
19de Florio, D.Z. and Muccillo, R.: Sintering of zirconia-yttria ceramics studied by impedance spectroscopy. Solid State Ionics 123, 301 (1999).CrossRefGoogle Scholar
20Badwal, S.P.S. and Drennan, J.: The effect of thermal history on the grain boundary resistivity of Y-TZP materials. Solid State Ionics 28–30, 1451 (1988).CrossRefGoogle Scholar
21Aoki, M., Chiang, Y.M., Kosacki, I., Lee, J.R., Tuller, H. and Liu, Y.: Solute segregation and grain-boundary impedance in high-purity stabilized zirconia. J. Am. Ceram. Soc. 79, 1169 (1996).CrossRefGoogle Scholar
22Guo, X.: Size dependent grain-boundary conductivity in doped zironia. Comput. Mater. Sci. 20, 168 (2001).CrossRefGoogle Scholar
23Risbud, S.H. and Groza, J.R.: Clean grain boundaries in aluminium nitride ceramics densified without additives by a plasma-activated sintering process. Philos. Mag. B 69, 525 (1994).CrossRefGoogle Scholar
24Chiodelli, G., Magistris, A., Scagliotti, M. and Parmigiani, F.: Electrical properties of plasma-sprayed yttria-stabilized zirconia films. J. Mater. Sci. 23, 1159 (1988).CrossRefGoogle Scholar
25Badwal, S.P.S.: Zirconia-based solid electrolytes: Microstructure, stability and ionic conductivity. Solid State Ionics 52, 23 (1992).CrossRefGoogle Scholar
26Martin, M. and Mecartney, M.L.: Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size. Solid State Ionics 161, 67 (2003).CrossRefGoogle Scholar
27Gibson, I.R., Dransfield, G.P. and Irvine, J.T.S.: Influence of yttria concentration upon electrical properties and susceptibility to ageing of yttria-stabilized zirconias. J. Eur. Ceram. Soc. 18, 661 (1998).CrossRefGoogle Scholar
28Guo, X. and Maier, J.: Grain boundary blocking effect in zirconia: A Schottky barrier analysis. J. Electrochem. Soc. 148, E121 (2001).CrossRefGoogle Scholar
29Guo, X. and Zhang, Z.: Grain size dependent grain boundary defect structure: Case of doped zirconia. Acta Mater. 51, 2539 (2003).CrossRefGoogle Scholar