Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T03:49:46.617Z Has data issue: false hasContentIssue false

Sonochemical synthesis of large-scale single-crystal PbS nanorods

Published online by Cambridge University Press:  31 January 2011

S. M. Zhou*
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China and Lingling University, Yongzhou 425000, People's Republic of China
Y. S. Feng
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
L. D. Zhang
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Large-scale single-crystal cubic PbS nanorods were successfully achieved by using ultrasound irradiation in certain ethylenediamine tetraacetic acid (EDTA) solutions, particularly in the solution of Pb:EDTA = 1:1. The obtained PbS nanorods were characterized using x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersed x-ray spectrometry, selected area electronic diffraction, and high-resolution transmission electron microscopy. The results reveal that the PbS nanorods with straight and uniform structure have a diameter of about 70–80 nm and length of about 1000 nm, where the growth mechanism is tentatively discussed. The successful synthesis of these cubic structure semiconductor PbS nanorods may open up new possibilities for using these materials as building blocks to create functional two-dimensional or three-dimensional nanostructured materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hornbaker, D.J., Kahng, S-J., Misra, S., Smith, B.W., Johnson, A.T., Mele, E.J., Luzzi, D.E., Yazdani, A., Science 295, 828 (2002).CrossRefGoogle Scholar
2.Machol, J., Wise, F., Patel, R., and Tanner, D., Phys. Rev. B 48, 2819 (1993).CrossRefGoogle Scholar
3.Patel, A.A., Wu, F., Zhang, J., Martinez, C., Mehra, R., Yang, Y., and Risbud, S., J. Phys. Chem. B 104, 11598 (2000).CrossRefGoogle Scholar
4.Kane, R., Cohen, R., and Silbey, R., J. Phys. Chem. 100, 7928 (1996).CrossRefGoogle Scholar
5.Nogami, M., Nagasaka, K., and Kotani, K., J. Non-Cryst. Solids 126, 87 (1990).CrossRefGoogle Scholar
6.Chen, S., Truax, L., and Sommers, J., Chem. Mater. 12, 3864 (2000).CrossRefGoogle Scholar
7.Gao, M., Yang, Y., Yang, B., Bian, F., and Shen, J., Chem. Commun. 10, 2779 (1994).CrossRefGoogle Scholar
8.Hergeth, W., Lebek, W., Kakusehke, R., and Schmutzer, K., Makromol. Chem. 192, 2265 (1991).CrossRefGoogle Scholar
9.Zeng, J., Zhu, Y., Yang, J., Liu, Y., and Qian, T., Chem. Lett. 10, 1000 (2001).CrossRefGoogle Scholar
10.Ultrasound: Its Chemical, Physical and Biological Effects, edited by Suslick, K.S. (VCH, Weinheim, Germany, 1988).Google Scholar
11.Wang, G., Li, G., Liang, C., and Zhang, L., Chem. Lett. 4, 344 (2001).CrossRefGoogle Scholar
12.Nikitenko, S., Koltypin, Y., Mastai, Y., Koltypin, M., and Gedanken, A., J. Mater. Chem. 12, 1450 (2002).CrossRefGoogle Scholar
13.Zhu, J., Qiu, Q., Wang, H., Zhang, J., Zhu, J., and Chen, Z., Inorg. Chem. Commun. 5, 242 (2002).CrossRefGoogle Scholar
14.Wang, H., Zhu, J., Zhu, J., and Chen, H., J. Phys. Chem. B 106, 3848 (2002).CrossRefGoogle Scholar
15.JCPDS Card File No. 5–592 (International Centre for Diffraction Data, Newton Square, PA, 1999).Google Scholar
16.Okitsu, K., Mizukoshi, Y., Bandow, H., Maedu, Y., Yamamoto, T., and Nagata, Y., Ultrason. Sonochem. 3, S249 (1996).CrossRefGoogle Scholar
17.Belloni, J., Radiat. Res. 150, S9 (1998).CrossRefGoogle Scholar