Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-29T05:56:06.608Z Has data issue: false hasContentIssue false

Solvothermal synthesis of titania-zirconia composite

Published online by Cambridge University Press:  01 February 2006

Xin M. Wang
Affiliation:
Manchester Materials Science Centre, University of Manchester,Manchester M1 7HS, United Kingdom
Ping Xiao*
Affiliation:
Manchester Materials Science Centre, University of Manchester,Manchester M1 7HS, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanocomposite particles of anatase-type titania (TiO2) and cubic/tetragonal zirconia were synthesized from hydrothermal processing of TiCl4 and ZrOCl2·8H2O or ZrCl4 alcohol solutions at 160–200 °C. It was found that the morphologies and composition of the composite particles were mainly controlled by the precursors and the sequence by which the precursors were added. The TiO2–ZrO2 composite particles with nanoscale uniformity can be obtained by solvothermal processing of TiCl4 or a ZrO2 precursor together with preformed ZrO2 or yttria stabilized zirconia (YSZ) nanoparticles in ethanol. A novel one-step and non-template method for preparing ZrO2–TiO2 core–shell structured composite particles with hollow interior was identified, and possible reaction mechanism was suggested.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schmidt, S., Beyer, S., Knabe, H., Immich, H., Meistring, R. and Gessler, A.: Advanced ceramic matrix composite materials for current and future propulsion technology applications. Acta Astronaut. 55, 409 (2004).CrossRefGoogle Scholar
2.Al-Dawery, I.A.H. and Butler, E.G.: Fabrication of high-temperature resistant oxide ceramic-matrix composites. Composites Part A–Applied Science and Manufacturing 32, 1007 (2001).Google Scholar
3.Attia, A.N.: New phase reinforcement for composite materials. Mater. Des. 22, 459 (2001).CrossRefGoogle Scholar
4.Lange, F.F.: Powder processing science and technology for increased reliability. J. Am. Ceram. Soc. 72, 3 (1989).CrossRefGoogle Scholar
5.Lewis, J.A.: Colloidal processing of ceramics. J. Am. Ceram. Soc. 83, 2341 (2000).CrossRefGoogle Scholar
6.Schehl, M., Diaz, L.A. and Torrecillas, R.: Alumina nanocomposites from powder-alkoxide mixtures. Acta Mater. 50, 1125 (2002).Google Scholar
7.Sakka, Y., Suzuki, T.S., Morita, K., Nakano, K. and Hiraga, K.: Colloidal processing and superplastic properties of zirconia- and alumina-based nanocomposites. Scripta Mater. 44, 2075 (2001).Google Scholar
8.Kim, B-N., Hiraga, K., Morita, K. and Sakka, Y.: A high-strain-rate superplastic ceramic. Nature 413, 288 (2001).CrossRefGoogle ScholarPubMed
9.Navio, J.A., Colon, G. and Herrmann, J.M.: Photoconductive and photocatalytic properties of ZrTiO4. Comparison with the parent oxides TiO2 and ZrO2. J. Photochem. Photobio. A 108, 179 (1997).CrossRefGoogle Scholar
10.Das, D., Mishra, H.K., Dalai, A.K. and Parida, K.M.: Isopropylation of benzene over sulfated ZrO2–TiO2 mixed-oxide catalyst. Applied Catalysis A–General 243, 271 (2003).Google Scholar
11.Das, D., Mishra, H.K., Parida, K.M.and Dalai, A.K.: Preparation, physico-chemical characterisation and catalytic activity of sulphated ZrO2–TiO2 mixed oxides. J. Mol. Catal., A–Chem. 189, 271 (2002).Google Scholar
12.Cosentino, I.C., Muccillo, E.N.S. and Muccillo, R.: Development of zirconia-titania porous ceramics for humidity sensors. Sens. Actuators, B–Chem. 96, 677 (2003).Google Scholar
13.Centi, G., Perathoner, S. and Rak, Z.S.: Reduction of greenhouse gas emissions by catalytic processes. Appl. Catal., B–Environ. 41, 143 (2003).Google Scholar
14.Diaz, P., Edirisinghe, M.J. and Ralph, B.: Microstructural changes and phase transformations in a plasma-sprayed zircona-yttria-titania thermal barrier coating. Surf. Coat. Technol. 82, 284 (1996).Google Scholar
15.Imhof, A. and Dhont, J.K.G.: Experimental phase diagram of a binary colloidal hard-sphere mixture with a large size ratio. Phys. Rev. Lett. 75, 1662 (1995).Google Scholar
16.Miao, X., Sun, D., Hoo, P.W., Liu, J., Hu, Y. and Chen, Y.: Effect of titania addition on yttria-stabilised tetragonal zirconia ceramics sintered at high temperatures. Ceram. Int. 30, 1041 (2004).CrossRefGoogle Scholar
17.Dawson, W.J.: Hydrothermal synthesis of advanced ceramic powders. Am. Ceram. Soc. Bull. 67, 1673 (1988).Google Scholar
18.Cozzoli, P.D., Kornowski, A. and Weller, H.: Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc. 125, 14539 (2003).CrossRefGoogle ScholarPubMed
19.Dell’Agli, G. and Mascolo, G.: Hydrothermal synthesis of ZrO2–Y2O3 solid solutions at low temperature. J. Eur. Ceram. Soc. 20, 139 (2000).CrossRefGoogle Scholar
20.Yang, J. and Ferreira, J.M.F.: On the titania phase transition by zirconia additive in a sol-gel-derived powder. Mater. Res. Bull. 33, 389 (1998).Google Scholar
21.Capel, F., Banares, M.A., Moure, C. and Duran, P.: The solid solubility limit of TiO2 in 3Y-TZP studied by raman spectroscopy. Mater. Lett. 38, 331 (1999).CrossRefGoogle Scholar
22.Zou, H. and Lin, Y.S.: Structural and surface chemical properties of sol-gel derived TiO2–ZrO2 oxides. Appl. Catal., A–Gen. 265, 35 (2004).CrossRefGoogle Scholar
23.Daturi, M., Cremona, A., Milella, F., Busca, G. and Vogna, E.: Characterisation of zirconia-titania powders prepared by coprecipitation. J. Eur. Ceram. Soc. 18, 1079 (1998).CrossRefGoogle Scholar
24.Traqueia, L.S.M., Pagnier, T. and Marques, F.M.B.: Structural and electrical characterization of titania-doped YSZ. J. Eur. Ceram. Soc. 17, 1019 (1997).CrossRefGoogle Scholar
25.Jung, K.Y. and Park, S.B.: Photoactivity of SiO2/TiO2 and ZrO2/TiO2 mixed oxides prepared by sol-gel method. Mater. Lett. 58, 2897 (2004).Google Scholar
26.Hodgson, S.N.B. and Cawley, J.: The effect of titanium oxide additions on the properties and behaviour of Y-TZP. J. Mater. Proc Technol. 119, 112 (2001).Google Scholar
27.Capel, F., Moure, C., Duran, P., Gonzalez-Elipe, A.R. and Caballero, A.: Structure-electrical properties relationships in TiO2-doped stabilized tetragonal zirconia ceramics. Ceram. Int. 25, 639 (1999).CrossRefGoogle Scholar
28.Hirano, M., Nakahara, C., Ota, K. and Inagaki, M.: Direct formation of zirconia-doped titania with stable anatase-type structure by thermal hydrolysis. J. Am. Ceram. Soc. 85, 1333 (2002).CrossRefGoogle Scholar
29.Kolen’ko, Y.V., Maximov, V.D., Burukhin, A.A., Muhanov, V.A. and Churagulov, B.R.: Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process. Mater. Sci. Eng. C 23, 1033 (2003).CrossRefGoogle Scholar
30.Wang, X.M. and Xiao, P.: Non-template synthesis of titania hollow spheres and their thermal stability. J. Mater. Res. 20, 796 (2005).CrossRefGoogle Scholar
31.Wang, X.M., Lorimer, G. and Xiao, P.: Solvothermal synthesis and processing of yttria-stabilized zirconia nanopowder. J. Am. Ceram. Soc. 88, 809 (2005).CrossRefGoogle Scholar
32.Wang, X.M. and Xiao, P.: Morphology control in solvothermal synthesis of titania nanoparticles (in press).Google Scholar
33.Busca, G., Ramis, G., Amores, J.M.G., Escribano, V.S. and Piaggio, P.: FT Raman and FTIR studies of titania and metatitanate powders. J. Chem. Soc., Faraday Trans. 3181 (1994).Google Scholar
34.Chiang, Y-M., Birnie, D. III and Kingery, W.D.: Physical Ceramics (John Wiley & Sons, Hoboken, NJ 1997).Google Scholar
35.Zheng, J-Y., Qiu, K-Y. and Wei, Y.: Investigation of Zr-incorporated mesoporous titania materials via nonsurfactant templated sol-gel route: Synthesis, characterization and stability. J. Mater. Sci. 38, 437 (2003).CrossRefGoogle Scholar