Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T11:51:47.808Z Has data issue: false hasContentIssue false

Solvothermal synthesis of shape-controlled manganese oxide materials and their electrochemical capacitive performances

Published online by Cambridge University Press:  11 September 2013

Wen-Yin Ko*
Affiliation:
Department of Chemistry, National Chung-Hsing University, 40227 Taichung, Taiwan
Lung-Jing Chen
Affiliation:
Department of Chemistry, National Chung-Hsing University, 40227 Taichung, Taiwan
Yu-Hung Chen
Affiliation:
Department of Chemistry, National Chung-Hsing University, 40227 Taichung, Taiwan
Kuan-Jiuh Lin*
Affiliation:
Department of Chemistry, National Chung-Hsing University, 40227 Taichung, Taiwan
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

We present a simple and quick procedure for the one-pot synthesis of manganese oxides under a basic solvothermal condition in the presence of cationic surfactants acting as the template in a 2-butanol/water solution. Three-dimensional spinel-type MnO2 microspheres composed of small nanoparticles have been fabricated for the first time using our method. Their corresponding electrochemical performances in the applications of supercapacitor electrodes exhibit a good specific capacitance (SC) value of ∼190 F/g at 0.5 A/g and excellent SC retention and Coulombic efficiency of ∼100% and ∼95% after 1000 charge/discharge cycles at 1 A/g, respectively. This suggests its potential applications in energy storage devices. Further, we demonstrate that this solvothermal technique enables the morphological tuning of manganese oxides in various forms such as schists, rods, fibers, and nanoparticles. This work describes a rapid and low-cost technique to fabricate novel architectures of manganese oxides having the desired crystal phase, which will highly benefit various supercapacitor applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kim, F., Connor, S., Song, H., Kuykendall, T., and Yang, P.D.: Platonic gold nanocrystals. Angew. Chem. Int. Ed. 43, 3673 (2004).CrossRefGoogle ScholarPubMed
Chen, Z.W., Jiao, Z., Pan, D.Y., Li, Z., Wu, M.H., Shek, C.H., Wu, C.M.L., and Lai, J.K.L.: Recent advances in manganese oxide nanocrystals: Fabrication, characterization, and microstructure. Chem. Rev. 112, 3833 (2012).CrossRefGoogle ScholarPubMed
Millstone, J.E., Wei, W., Jones, M.R., Yoo, H.J., and Mirkin, C.A.: Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett. 8, 2526 (2008).CrossRefGoogle ScholarPubMed
Ko, W.Y., Chen, W.H., Tzeng, S.D., Gwo, S., and Lin, K.J.: Synthesis of pyramidal copper nanoparticles on gold substrate. Chem. Mater. 18, 6097 (2006).CrossRefGoogle Scholar
Ko, W.Y., Chen, W.H., Cheng, C.Y., and Lin, K.J.: Architectural growth of Cu nanoparticles through electrodeposition. Nanoscale Res. Lett. 4, 1481 (2009).CrossRefGoogle ScholarPubMed
Chen, J.Z., Yen, Y.C., Ko, W.Y., Cheng, C.Y., and Lin, K.J.: The role of the fabrication of anatase-TiO2 chain-networked photoanodes. Adv. Mater. 23, 3970 (2011).CrossRefGoogle ScholarPubMed
Chen, J.Z., Ko, W.Y., Yen, Y.C., Chen, P.H., and Lin, K.J.: Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties. ACS Nano 6, 6633 (2012).CrossRefGoogle ScholarPubMed
Sun, Y.G. and Xia, Y.N.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002).CrossRefGoogle ScholarPubMed
Lee, H., Habas, S.E., Kweskin, S., Butcher, D., Somorjai, G.A., and Yang, P.D.: Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 45, 7824 (2006).CrossRefGoogle ScholarPubMed
Qiu, G.H., Huang, H., Dharmarathna, S., Benbow, E., Stafford, L., and Suib, S.L.: Hydrothermal synthesis of manganese oxide nanomaterials and their catalytic and electrochemical properties. Chem. Mater. 23, 3892 (2011).CrossRefGoogle Scholar
Brock, S.L., Sanabria, M., Nair, J., Suib, S.L., and Ressler, T.: Tetraalkylammonium manganese oxide gels: Preparation, structure, and ion-exchange properties. J. Phys. Chem. B 105, 5404 (2001).CrossRefGoogle Scholar
Pinna, N., Willinger, M., Weiss, K., Urban, J., and Schlogl, R.: Local structure of nanoscopic materials: V2O5 nanorods and nanowires. Nano Lett. 3, 1131 (2003).CrossRefGoogle Scholar
Soler-illia, G.J.D., Sanchez, C., Lebeau, B., and Patarin, J.: Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102, 4093 (2002).CrossRefGoogle ScholarPubMed
Nguyen, T.D. and Do, T.O.: Solvo-hydrothermal approach for the shape-selective synthesis of vanadium oxide nanocrystals and their characterization. Langmuir 25, 5322 (2009).CrossRefGoogle ScholarPubMed
Huang, X.K., Lv, D.P., Yue, H.J., Attia, A., and Yang, Y.: Controllable synthesis of alpha- and beta-MnO(2): Cationic effect on hydrothermal crystallization. Nanotechnology 19, 225606 (2008).CrossRefGoogle ScholarPubMed
Zhang, L.C., Liu, Z.H., Lv, H., Tang, X.H., and Ooi, K.: Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides. J. Phys. Chem. C 111, 8418 (2007).CrossRefGoogle Scholar
Kim, J.H., Ayalasomayajula, T., Gona, V., and Choi, D.: Fabrication and electrochemical characterization of a vertical array of MnO2 nanowires grown on silicon substrates as a cathode material for lithium rechargeable batteries. J. Power Sources 183, 366 (2008).CrossRefGoogle Scholar
Lee, J.W., Hall, A.S., Kim, J-D., and Mallouk, T.E.: A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24, 1158 (2012).CrossRefGoogle Scholar
Wei, W.F., Cui, X.W., Chen, W.X., and Ivey, D.G.: Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697 (2011).CrossRefGoogle ScholarPubMed
Ghodbane, O., Pascal, J.L., Fraisse, B., and Favier, F.: Structural in situ study of the thermal behavior of manganese dioxide materials: Toward selected electrode materials for supercapacitors. ACS Appl. Mater. Interfaces 2, 3493 (2010).CrossRefGoogle ScholarPubMed
Zhu, J., Shi, W., Xiao, N., Rui, X., Tan, H., Lu, X., Hng, H.H., Ma, J., and Yan, Q.: Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors. ACS Appl. Mater. Interfaces 4, 2769 (2012).CrossRefGoogle ScholarPubMed
Ghodbane, O., Pascal, J-L., and Favier, F.: Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 1, 1130 (2009).CrossRefGoogle ScholarPubMed
Wang, Y., Zhu, Q.S., and Tao, L.: Fabrication and growth mechanism of hierarchical porous Fe3O4 hollow sub-microspheres and their magnetic properties. CrystEngComm 13, 4652 (2011).CrossRefGoogle Scholar
Xia, H., Feng, J.K., Wang, H.L., Lai, M.O., and Lu, L.: MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. J. Power Sources 195, 4410 (2010).CrossRefGoogle Scholar
Portehault, D., Cassaignon, S., Baudrin, E., and Jolivet, J.P.: Structural and morphological control of manganese oxide nanoparticles upon soft aqueous precipitation through MnO4 -/Mn2 + reaction. J. Mater. Chem. 19, 2407 (2009).CrossRefGoogle Scholar
Kai, K., Kobayashi, Y., Yamada, Y., Miyazaki, K., Abe, T., Uchimoto, Y., and Kageyama, H.: Electrochemical characterization of single-layer MnO2 nanosheets as a high-capacitance pseudocapacitor electrode. J. Mater. Chem. 22, 14691 (2012).CrossRefGoogle Scholar
Brock, S.L., Sanabria, M., Suib, S.L., Urban, V., Thiyagarajan, P., and Potter, D.I.: Particle size control and self-assembly processes in novel colloids of nanocrystalline manganese oxide. J. Phys. Chem. B 103, 7416 (1999).CrossRefGoogle Scholar
Camblor, M.A., Corma, A., and Valencia, S.: Characterization of nanocrystalline zeolite beta. Microporous Mesoporous Mater. 25, 59 (1998).CrossRefGoogle Scholar
Bach, S., Henry, M., Baffier, N., and Livage, J.: Sol-gel synthesis of manganese oxides. J. Solid State Chem. 88, 325 (1990).CrossRefGoogle Scholar
Brousse, T., Toupin, M., Dugas, R., Athouel, L., Crosnier, O., and Belanger, D.: Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc. 153, A2171 (2006).CrossRefGoogle Scholar
Devaraj, S. and Munichandraiah, N.: Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C 112, 4406 (2008).CrossRefGoogle Scholar
Xue, Y., Chen, Y., Zhang, M-L., and Yan, Y-D.: A new asymmetric supercapacitor based on lambda-MnO2 and activated carbon electrodes. Mater. Lett. 62, 3884 (2008).CrossRefGoogle Scholar
Supplementary material: File

Lin Supplementary Material

Table

Download Lin Supplementary Material(File)
File 38.4 KB