Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T21:03:52.254Z Has data issue: false hasContentIssue false

Solution processing approaches for solid electrolytes and electrode materials

Published online by Cambridge University Press:  31 January 2011

Steven P. Simner
Affiliation:
Department of Materials Science and Engineering, University of California–Los Angeles, Los Angeles, California 90095–1595
Pu-Wei Wu
Affiliation:
Department of Materials Science and Engineering, University of California–Los Angeles, Los Angeles, California 90095–1595
Bruce Dunn
Affiliation:
Department of Materials Science and Engineering, University of California–Los Angeles, Los Angeles, California 90095–1595
Get access

Abstract

Solution processing methods have been used to prepare a solid electrolyte, copper-doped bismuth vanadate, and several different lithium transition metal oxide cathode materials. Dense thin films of the bismuth vanadate were prepared by pyrolysis of metal organic precursors deposited on various oxide substrates. A high degree of crystal orientation was obtained using single crystal MgO substrates. The Pechini process was used to prepare powders of the different materials and a variety of results were obtained. The bismuth vanadate exhibited a second phase of BiVO4 while LiNiO2 and the LiCoxNi1−xO2 solid solution require further efforts at obtaining the proper phase and stoichiometry. The LiCoO2 system formed readily and exhibited good electrochemical performance.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schleich, D. M., Solid State Ionics 70/71407 (1994).CrossRefGoogle Scholar
2.Yoshimura, M. and Suchanek, W., Solid State Ionics 98, 197 (1997).CrossRefGoogle Scholar
3.Segal, D., J. Mater. Chem. 7, 1297 (1997).CrossRefGoogle Scholar
4.Metlin, Y. G. and Tretyakov, Y. D., J. Mater. Chem. 4, 1659 (1994).CrossRefGoogle Scholar
5.Perthuis, H., Velasco, G., and Colomban, Ph., Jpn. J. Appl. Phys. 23, 534 (1984).CrossRefGoogle Scholar
6.Amine, K., Tukamoto, H., Yasuda, H., and Fujita, Y., J. Electrochem. Soc. 143, 1607 (1996).CrossRefGoogle Scholar
7.Sun, Y-K. and Oh, I-H., J. Mater. Sci. 31, 3617 (1996).CrossRefGoogle Scholar
8.Liu, W., Farrington, G. C., Chaput, F., and Dunn, B., J. Electrochem. Soc. 143, 879 (1996).CrossRefGoogle Scholar
9.Zhong, Q., Bonakdarpour, A., Zhang, M., Gao, Y., and Dahn, J. R., J. Electrochem. Soc. 144, 205 (1997).CrossRefGoogle Scholar
10.Steele, B. C. H., in High Conductivity Solid Ionic Conductors, edited by Takahashi, T. (World Scientific, Singapore, 1989), p. 402.CrossRefGoogle Scholar
11.Verkerk, M. J., Keizer, K., and Burggraaf, A. J., J. Appl. Electrochem. 10, 81 (1980).CrossRefGoogle Scholar
12.Abraham, F., Debreuille-Gresse, M. F., Mairesse, G., and Nowogrocki, G., Solid State Ionics 28–30, 529 (1988).CrossRefGoogle Scholar
13.Lee, C. K., Sinclair, D. C., and West, A. R., Solid State Ionics 62, 193 (1993).CrossRefGoogle Scholar
14.Abraham, F., Boivin, J. C., Mairesse, G., and Nowogrocki, G., Solid State Ionics 40, 934 (1990).CrossRefGoogle Scholar
15.Goodenough, J. B., Manthiram, A., Paranthaman, M., and Zhen, Y. S., Mater. Sci. Eng. B12, 357 (1992).CrossRefGoogle Scholar
16.Anne, M., Bacmann, M., Pernot, E., Abraham, F., Mairesse, G., and Strobel, P., Physica B 180–181, 621 (1992).CrossRefGoogle Scholar
17.Simner, S. P., Suarez-Sandoval, D., Mackenzie, J. D., and Dunn, B., J. Am. Ceram. Soc. (in press).Google Scholar
18.Lange, F. F., Science 273, 903 (1996).CrossRefGoogle Scholar
19.Pechini, M. P., U.S. Patent No. 3,330,697 (1967).Google Scholar
20.Tai, L-W. and Lessing, P. A., J. Mater. Res. 7, 502 (1992).CrossRefGoogle Scholar
21.Zhang, S. C., Messing, G. L., Huebner, W., and Coleman, M. M., J. Mater. Res. 5, 459 (1990).CrossRefGoogle Scholar
22.Golden, S. J., Bloomer, T. E., Lange, F. F., Segadaes, A. M., Vaidya, K. J., and Cheetham, A. K., J. Am. Ceram. Soc. 74, 123 (1993).CrossRefGoogle Scholar
23.Nasu, H., Makida, S., Imura, T., and Osaka, Y., J. Mater. Sci. Lett. 7, 858 (1988).CrossRefGoogle Scholar
24.Miller, K. T., Chan, C-J., Cain, M. G., and Lange, F. F., J. Mater. Res. 8, 169 (1993).CrossRefGoogle Scholar
25.Scrosati, B., J. Electrochem. Soc. 139, 2776 (1992).CrossRefGoogle Scholar
26.Koksbang, R., Barker, J., Shi, H., and Saidi, M. K., Solid State Ionics 84, 1 (1996).CrossRefGoogle Scholar
27.Thackeray, M. M., J. Electrochem. Soc. 142, 2558 (1995).CrossRefGoogle Scholar
28.Li, W., Reimers, J. N., and Dahn, J. R., Solid State Ionics 67, 123 (1994).CrossRefGoogle Scholar
29.Ohzuku, T., Ueda, A., Nagayama, M., Iwakoshi, Y., and Komori, H., Electrochim. Acta 38, 1159 (1993).CrossRefGoogle Scholar
30.Ebner, W., Fouchard, D., and Xie, L., Solid State Ionics 69, 238 (1994).CrossRefGoogle Scholar
31.Ueda, A. and Ohzuku, T., J. Electrochem. Soc. 141, 2010 (1994).CrossRefGoogle Scholar
32.Gummow, R. J. and Thackeray, M. M., Solid State Ionics 53–56, 681 (1992).CrossRefGoogle Scholar
33.Morales, J., Perez-Vicente, C., and Tirado, J. L., Mater. Res. Bull. 25, 623 (1990).CrossRefGoogle Scholar
34.Li, W., Reimers, J. N., and Dahn, J. R., Phys. Rev. B 46, 3236 (1992).CrossRefGoogle Scholar
35.Ohzuku, T., Komori, H., Nagayama, N., Sawai, K., and Hirai, T., Chem. Express 6, 161 (1991).Google Scholar
36.Caurant, D., Baffier, N., Garcia, B., and Pereira-Ramos, J. P., Solid State Ionics 91, 45 (1996).CrossRefGoogle Scholar