Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T02:47:02.721Z Has data issue: false hasContentIssue false

Solid-state reaction of Pt thin film with single-crystal (001) β–SiC

Published online by Cambridge University Press:  03 March 2011

J.S. Chen
Affiliation:
California Institute of Technology, Pasadena, California 91125
E. Kolawa
Affiliation:
California Institute of Technology, Pasadena, California 91125
M-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, California 91125
R.P. Ruiz
Affiliation:
Jet Propulsion Laboratory, Pasadena, California 91109
L. Baud
Affiliation:
LETI (CEA-Technologies avancées)-DMEL-CEN/G, 85X, F-38041, Grenoble, France
C. Jaussaud
Affiliation:
LETI (CEA-Technologies avancées)-DMEL-CEN/G, 85X, F-38041, Grenoble, France
R. Madar
Affiliation:
L. M. G. P.-ENSPG, BP 46, F-38402, Saint-Martin-d'Heres, France
Get access

Abstract

Thermally induced solid-state reactions between a 70 nm Pt film and a single-crystal (001) β-SiC substrate at temperatures from 300 °C to 1000 °C for various time durations are investigated by 2 MeV He backscattering spectrometry, x-ray diffraction, secondary ion mass spectrometry, scanning electron microscopy, and cross-sectional transmission electron microscopy. Backscattering spectrometry shows that Pt reacts with SiC at 500 °C. The product phase identified by x-ray diffraction is Pt3Si. At 600–900 °C, the main reaction product is Pt2Si, but the depth distribution of the Pt atoms changes with annealing temperature. When the sample is annealed at 1000 °C, the surface morphology deteriorates with the formation of some dendrite-like hillocks; both Pt2Si and PtSi are detected by x-ray diffraction. Samples annealed at 500–900 °C have a double-layer structure with a silicide surface layer and a carbon-silicide mixed layer below in contact with the substrate. The SiC—Pt interaction is resolved at an atomic scale with high-resolution electron microscopy. It is found that the grains of the sputtered Pt film first align themselves preferentially along an orientation of {111}Pt//{001}SiC without reaction between Pt and SiC. A thin amorphous interlayer then forms at 400 °C. At 450 °C, a new crystalline phase nucleates discretely at the Pt-interlayer interface and projects into or across the amorphous interlayer toward the SiC, while the undisturbed amorphous interlayer between the newly formed crystallites maintains its thickness. These nuclei grow extensively down into the substrate region at 500 °C, and the rest of the Pt film is converted to Pt3Si. Comparison between the thermal reaction of SiC-Pt and that of Si–Pt is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Davis, R. F., Kelner, G., Shur, M., Palmour, J. W., and Edmond, J. A., Proc. IEEE 79, 677 (1991).CrossRefGoogle Scholar
2Maruyama, B., Barrera, E. V., and Rabenberg, L., in Metal Matrix Composites: Processing and Interfaces, edited by Everett, R. K. and Arsenault, R. J. (Academic Press, San Diego, CA, 1991), p. 181.CrossRefGoogle Scholar
3Papanicolaou, N. A., Christou, A., and Gipe, M. L., J. Appl. Phys. 65, 3526 (1989).CrossRefGoogle Scholar
4Bhatnagar, M., McLarty, P. K., and Baliga, B. J., IEEE Elec. Dev. Lett. 13, 501 (1992).Google Scholar
5Bermudez, V. M. and Kaplan, R., J. Mater. Res. 5, 2882 (1990).Google Scholar
6Chou, T. C., Joshi, A., and Wadsworth, J., J. Mater. Res. 6, 796 (1991).CrossRefGoogle Scholar
7Binary Alloy Phase Diagrams, edited by Massalski, T. B., 2nd ed. (ASM INTERNATIONAL, Materials Park, OH, 1990).Google Scholar
8Thompson-Russell, K. C. and Edington, J. W., in Monograph in Practical Electron Microscopy for Materials Science, edited by Edington, J. W. (Philips Technical Library, Holland, 1977), Vol. 5, p. 21.Google Scholar
9Nicolet, M-A. and Lau, S. S., in VLSI Electronics: Microstructure Science, edited by Einspruch, N. G. and Larrabee, G. B. (Academic Press, New York, 1983), Vol. 6, p. 342.Google Scholar
10Gösele, U. and Tu, K. N., J. Appl. Phys. 53, 3252 (1982).CrossRefGoogle Scholar
11d'Heurle, F. M. and Gas, P., J. Mater. Res. 1, 205 (1986).CrossRefGoogle Scholar
12Bené, R.W., J. Appl. Phys. 61, 1826 (1987).CrossRefGoogle Scholar
13Dybkov, V. I., J. Phys. Chem. Solids 53, 703 (1992).Google Scholar
14Sands, T., Mater. Sci. Eng. Bl, 289 (1989).Google Scholar
15Schmid-Fetzer, R., in Thermochemistry of Alloys, edited by Brodowsky, H. and Schaller, H-J. (Kluwer Academic Publishers, Boston, MA, 1989), p. 107.Google Scholar
16Abelson, J. R., Kim, K. B., Mercer, D. E., Helms, C. R., Sinclair, R., and Sigmon, T. W., J. Appl. Phys. 63, 689 (1988).CrossRefGoogle Scholar
17Samsonov, G. V. and Vinitskii, I. M., Handbook of Refractory Compounds (IFI/Plenum, New York, 1980), p. 209.CrossRefGoogle Scholar
18Kittle, C., Introduction of Solid State Physics, 6th ed. (John Wiley & Sons, Singapore, 1986), p. 55.Google Scholar
19Pai, C. S., Hanson, C. M., and Lau, S. S., J. Appl. Phys. 57, 618 (1985).CrossRefGoogle Scholar
20d'Heurle, F. M., J. Mater. Res. 3, 167 (1988).CrossRefGoogle Scholar
21Walser, R. M. and Bene, R. W., Appl. Phys. Lett. 28, 624 (1976).Google Scholar
22Ko, D-H. and Sinclair, R., J. Appl. Phys. 72, 2036 (1992).CrossRefGoogle Scholar
23Tu, K. N. and Herd, S. R., Phys. Rev. B 43, 1198 (1991).Google Scholar
24Affolter, K., Zhao, X-A., and Nicolet, M-A., J. Appl. Phys. 58, 3087 (1985).CrossRefGoogle Scholar
25McLeod, J. E., Wandt, M.A.E., Pretorious, R., and Comrie, CM., J. Appl. Phys. 72, 2232 (1992).Google Scholar
26Searcy, A. W. and Finnie, L. N., J. Am. Ceram. Soc. 45, 268 (1962).CrossRefGoogle Scholar
27Schiepers, R. C. J., van Loo, F. J. J., and With, G. de, J. Am. Ceram. Soc. 71, C-284 (1988).CrossRefGoogle Scholar