Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T20:16:14.672Z Has data issue: false hasContentIssue false

Solid-state amorphization reaction by temperature-dependent ion mixing

Published online by Cambridge University Press:  31 January 2011

E. Ma
Affiliation:
California Institute of Technology, Pasadena, California 91125
C. W. Nieh
Affiliation:
California Institute of Technology, Pasadena, California 91125
M-A. Nicdlet
Affiliation:
California Institute of Technology, Pasadena, California 91125
W. L. Johnson
Affiliation:
California Institute of Technology, Pasadena, California 91125
Get access

Abstract

A layer of amorphous Mo–Al alloy is formed by ion-assisted solid-state interdiffusion reaction of a Mo/Al bilayer. Xe ion irradiation at 200 °C enhances the long-range diffusion of the dominant moving species while the formation of equilibrium compounds remains inhibited. The idea of using the temperature-dependent ion mixing at intermediate temperatures to promote a solid-state amorphization reaction opens the possibility of growing an amorphous phase in a system where both compound formation and interdiffusion are difficult

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schwarz, R. B. and Johnson, W. L.Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
2Johnson, W.L.Prog. Mater. Sci. 30, 81 (1986).Google Scholar
3Ma, E.Meng, W. J.Johnson, W. L.Nicolet, M.A., and Nathan, M.Appl. Phys. Lett. 53, 2033 (1988).Google Scholar
4see Tao, K.Hewett, C.A.Lau, S.S.Buchal, Ch., and Poker, D.B.Appl. Phys. Lett. 50, 1343 (1987), and references therein.CrossRefGoogle Scholar
5Mayer, J.W.Tsaur, B.Y.Lau, S.S. and Hung, L. S.Nucl. Instrum. Methods 182/183, 1 (1981).Google Scholar
6Johnson, W. L.Cheng, Y.T., Rossum, M. Van, and Nicolet, M.A., Nucl. Instrum. Meth. Phys. Res. B7/8, 657 (1985); B.X. Liu E. Ma L.J. Huang and J. Li Nucl. Instrum. Meth. Phys. Res. B 19/20, 682 (1987).CrossRefGoogle Scholar
7Singh, R.N.Brown, D.M.Kim, M. J. and Smith, G. A.J. Appl. Phys. 58, 12 (1985), and references therein; and also E. G. Colgan Ph.D. Thesis Cornell University, 1987.Google Scholar
8Ma, E.Brunner, A.J.Workman, T. W.Nieh, C.W.Zhao, X.A., and Nicolet, M.A., Mater. Res. Soc. Symp. Proc. 100, 75 (1988).Google Scholar
9Colgan, E. G. and Mayer, J. W.J. Mater. Res. 1, 786 (1986).Google Scholar
10Hung, L. S.Colgan, E.G. and Mayer, J.W.Nucl. Instrum. Meth. Phys. Res. B19/20, 654 (1987).Google Scholar
11Tsaur, B.Y.Mayer, J.W.Nicolet, M.A., and Tu, K. N. in Ion Beam Metallurgy, edited by Preece, C.M . and Hirvonen, J.K. (Materials Research Society, Pittsburgh, PA, 1980), p. 142.Google Scholar
12Cheng, Y.T., Zhao, X.A., Banwell, T.Workman, T. W.Nicolet, M.A., and Johnson, W. L.J. Appl. Phys. 60, 2515 (1986).CrossRefGoogle Scholar
13Hung, L.S.Mayer, J.W.Pai, C.S. and Lau, S.S.J. Appl. Phys. 58, 1527 (1985); L. S. Hung W. Xia D. B. Poker M. Fernandes K. Tao S. S. Lau and J. W. Mayer J. Appl. Phys. 64, 2354 (1988).CrossRefGoogle Scholar
14Affolter, K.Zhao, X.A., and Nicolet, M.A., J. Appl. Phys. 58, 3087 (1985).Google Scholar
15Aboelfotoh, M. O.Alessandrini, A. and d'Heurle, E. M., Appl. Phys. Lett. 49, 1242 (1986); and M. O. Aboelfotoh H. M. Tawancy and F. M. d'Heurle, Appl. Phys. Lett. 50, 1453 (1987).CrossRefGoogle Scholar
16Hung, L. S. and Mayer, J.W.Thin Solid Films 123, 135 (1985).CrossRefGoogle Scholar
17Maex, K.Keersmaecker, R.F. De, Rossum, M. Van, and Weg, W. F. van der, Mater. Res. Soc. Symp. Proc. 100, 63 (1988).Google Scholar
18Nicolet, M.A. and Lau, S. S. in VLSI Microstructure Science, edited by Einspruch, N. G. (Academic Press, New York, 1983), Vol. 6, Chap. 6.Google Scholar
19Kohlof, K.Mantl, S. and Stritzker, B.Mater. Res. Soc. Symp. Proc. 74, 443 (1987).Google Scholar
20Maex, K.Keersmaecker, R. F. De, Rossum, M. Van, Weg, W. F. van der, and Krooshof, G.Nucl. Instrum. Meth. Phys. Res. B19/20, 731 (1987).Google Scholar
21Holloway, K. and Sinclair, R.J. Appl. Phys. 61, 1359 (1987); I.J. M. M. Raaijmakeres A.H. Reader and P. H. Oosting J. Appl. Phys. 63, 2790 (1988).Google Scholar
22Van, A.H.Ommen, M.Willemsen, F. C.Boudewun, P.R. and Reader, A.H.Mater. Res. Soc. Symp. Proc. 54, 221 (1986).Google Scholar
23Tsai, M. Y.Peterson, C. S.d'Heurle, F. M., and Maniscalco, V.Appl. Phys. Lett. 37, 295 (1980).Google Scholar
24Inada, T.Kishi, K.Miyagi, S. and Kahinuma, H.Nucl. Instrum. Methods 218, 567 (1983).Google Scholar
25Pampus, K.Bottiger, J., Torp, B. and Samwer, K.Mater. Sci. Eng. 97, 97 (1988).CrossRefGoogle Scholar
26Averback, R. S.Hahn, H. and Ding, F.R., J. Less-Comm. Metals 140, 267 (1988); Fu-rong Ding, R. S. Averback and H. Hahn J. Appl. Phys. 64, 1785 (1988).CrossRefGoogle Scholar
27Averback, R. S. and Hahn, H.Phys. Rev. B37, 10383 (1988).Google Scholar
28Ho, K.T., Scott, D.M. and Nicolet, M.A., Thin Solid Films 127, 171 (1985).Google Scholar