Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T17:54:46.886Z Has data issue: false hasContentIssue false

Solid-state amorphization, interdiffusion, and ion-beam mixing in Au/Zr and Ni/Zr

Published online by Cambridge University Press:  31 January 2011

Fu-Rong Ding
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
P. R. Okamoto
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
L. E. Rehn
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Inert-gas markers, Rutherford backscattering, and x-ray diffraction were used to investigate solid-state interdiffusion in Ni/Zr and Au/Zr bilayer films as a function of temperature; microstructural studies during annealing were performed in situ, in a high-voltage electron microscope. Au, in contrast to Ni, is not an anomalously fast diffuser in crystalline Zr. Nevertheless, an amorphous product phase was found in both alloy systems for reaction temperatures  550 K; heterogeneous nucleation of the amorphous phase was observed in Au/Zr. The interdiffusion data reveal two distinct Arrhenius regimes, 330–∼470 K and ∼480–550 K, with quite different apparent activation enthalpies. These thermal interdiffusion results are compared with temperature dependent studies of ion-beam mixing in similar bilayer specimens. This comparison indicates that the enhanced efficiencies observed for ion-beam mixing above ∼480 K result from the as-prepared metastable microstructurc, and are not due to radiation-enhanced diffusion.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schwartz, R. B. and Johnson, W. L.Phys. Rev. Lett. 51, 415 (1983).Google Scholar
2Clemens, B.M.Phys. Rev. B33, 7615 (1986).Google Scholar
3Hood, G.M. and Schultz, R.J.Phil. Mag. 26, 329 (1972).CrossRefGoogle Scholar
4Newcomb, S.B. and Tu, K. N.Appl. Phys. Lett. 48, 1436 (1986).CrossRefGoogle Scholar
5Barbour, J. C.Reus, R. de, Denier, A. W.Gon, van der, and Saris, F. W.J. Mater. Res. 2, 168 (1987).CrossRefGoogle Scholar
6Cheng, Y.T.Johnson, W.L. and Nicolet, M.A.Appl. Phys. Lett. 47, 800 (1985).Google Scholar
7Ding, F.R.Okamoto, P. R. and Rehn, L. E.Mats. Res. Soc. Proc. 100, 69 (1988).Google Scholar
8Hood, G. M. and Schultz, R. J.Acta Metall. 30, 1571 (1982).Google Scholar
9Colgan, E.G. and Mayer, J. W.J. Mater. Res. 2, 28 (1987).Google Scholar
10Paine, B. and Averback, R. S.Nucl. Instrum. Methods B7/8, 707 (1985).Google Scholar
11Rehn, L.E. and Okamoto, P. R.Nucl. Instrum. Methods B39, 104 (1989).Google Scholar
12Ding, F.R.Averback, R.S. and Hahn, H.J. Appl. Phys. 64, 1785 (1988).CrossRefGoogle Scholar
13Matteson, S.Roth, J. and Nicolet, M.A.Radiat. Eff. 42, 217 (1979).CrossRefGoogle Scholar
14Cheng, Y.T.Zhao, X.A.Banwell, T.Workman, T.W.Nicolet, M.A. and Johnson, W.L.J. Appl. Phys. 60 (7), 2615 (1986).CrossRefGoogle Scholar
15Program developed by Schalit, M.Averback, R.S. and Thompson, L. J. ANL.Google Scholar
16Fedorov, G.B. and Smirnov, E. A.Diffusion in Reactor Materials (Atomizdat Publishers, Moscow, 1978), p. 28.Google Scholar
17Barbour, J.C.Phys. Rev. Lett. 55, 2872 (1985); J.C. Barbour M. Nastasi and J. W. Mayer Appl. Phys. Lett. 48, 517 (1986).CrossRefGoogle Scholar
18Hahn, H.Averback, R.S.Ding, F.R.Loxton, C. and Baker, J.Mats. Sci. Forum 1518, 511 (1987).Google Scholar
19Sizman, R.S.J. Nucl. Mater. 64/70, 386 (1978).Google Scholar
20Liu, J. C. and Mayer, J. W.Nucl. Instrum. Methods B19/20, 538 (1987).Google Scholar