Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T12:36:52.529Z Has data issue: false hasContentIssue false

Solid-phase epitaxy of Ti-implanted LiNbO3

Published online by Cambridge University Press:  31 January 2011

D. B. Poker
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
D. K. Thomas
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

The solid-phase epitaxy of LiNbO3 following ion implantation of Ti dopant for the purpose of producing optical waveguides has been studied. Implanting 360-keV Ti at liquid nitrogen temperature produces a highly damaged region extending to a depth of about 400 nm. This essentially amorphous region can be recrystallized epitaxially by annealing in a water-saturated oxygen atmosphere at temperatures near 400 °C. though complete removal of all irradiation-induced damage requires temperatures in excess of 600 °C. The activation energy of the regrowth is 2.0 eV for implanted fluences below 3 ⊠ 1016 Ti/cm2. At higher fluences the regrowth proceeds more slowly, and Ti dopant segregates at the regrowth interface. Complete recrystallization following high-dose implantation requires annealing temperatures in excess of 800 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hunsperger, R. G., Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1982), Springer Series in Optical Sciences, Vol. 33.Google Scholar
2Schmidt, R. V. and Kaminow, I. P., Appl. Phys. Lett. 25, 458 (1974).CrossRefGoogle Scholar
3Jackel, J.L., Rice, C.E., and Veselka, J.J., Appl. Phys. Lett. 41, 607 (1982).Google Scholar
4Appleton, B.R., Beardsley, G. M., Farlow, G. C., Christie, W. H., and Ashley, P.R., J. Mater. Res. 1, 104 (1986); Ch. Buchal, P.R. Ashley, D. K. Thomas, and B. R. Appleton, Mat. Res. Soc. Symp. Proc. 88, 93 (1987); Ch. Buchal, P.R. Ashley, and B.R. Appleton, J. Mater. Res. 2, 222 (1987).CrossRefGoogle Scholar
5Narayan, J., Holland, O.W., and Appleton, B.R., J. Vac. Sci. Technol. B1, 871 (1983).Google Scholar
6Gotz, G. and Karge, H., Nucl. Instrum. and Methods 209/210, 1079 (1983).Google Scholar
7Narayan, J., J. Appl. Phys. 53, 8607 (1982).CrossRefGoogle Scholar
8Sweeney, K. L. and Halliburton, L. E., Appl. Phys. Lett. 43, 336 (1983).Google Scholar
9Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. and Methods 174, 257 (1980).CrossRefGoogle Scholar
10Canali, C., Camera, A., Celotti, G., Mea, G. Delia, and Mazzoldi, P., Mat. Res. Soc. Symp. Proc. 24, 459 (1984).Google Scholar
11Buchal, Ch. and Mantl, S., Mat. Res. Soc. Symp. Proc. 100, 317 (1988); W.T. Elam and P. A. Skeath, Bull. Am. Phys. Soc. 32, 931 (1987).CrossRefGoogle Scholar
12Rauber, A., in Current Topics in Materials Science, edited by Kaldis, E. (North-Holland, Amsterdam, 1978), Vol. 1, p. 485.Google Scholar
13Kubaschewski, O. and Alcock, C.B., Metallurgical Thermochemistry (Pergamon Press, New York, 1979), 5th ed., pp. 267323.Google Scholar