Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T04:43:31.831Z Has data issue: false hasContentIssue false

The solidification of large sections in ceramic injection molding: Part I. Conventional molding

Published online by Cambridge University Press:  18 February 2016

T. Zhang
Affiliation:
Department of Materials Technology, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
J. R. G. Evans
Affiliation:
Department of Materials Technology, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
Get access

Extract

A well-characterized alumina-polypropylene suspension was injection molded as cylinders of 20 and 40 mm diameter. A finite difference method was used to calculate the temperature distributions in the cylinders and in the sprue during solidification which incorporated the enthalpy of crystallization. The times at which pressure in the cavity began to decay, the calculated sprue solidification time, and the calculated time at which pressure in the center of the cavity reached zero were compared as a function of hold pressure. The resulting solidification-induced defects were revealed by radiography and sectioning and explained in terms of the kinetics of solidification.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Katayama, K., Watanabe, T., Matoba, K., and Katoh, N., SAE Tech. Pap. Series No. 861128, 1986, 110.Google Scholar
2. Edirisinghe, M. J. and Evans, J. R. G., J. Mater. Sci. 22, 22672273 (1987).CrossRefGoogle Scholar
3. Allan, P. S., Bevis, M. J., Edirisinghe, M. J., Evans, J. R. G., and Hornsby, P. R., J. Mater. Sci. Lett. 6, 165166 (1987).CrossRefGoogle Scholar
4. Zhang, J. G., Edirisinghe, M. J., and Evans, J. R. G., Industrial Ceram. 9, 7282 (1989).Google Scholar
5. Zhang, J. G., Edirisinghe, M. J., and Evans, J. R. G., J. Euro. Ceram. Soc. 5, 6372 (1989).CrossRefGoogle Scholar
6. Thomas, M. S. and Evans, J. R. G., Br. Ceram. Trans. J. 87, 2226 (1988).Google Scholar
7. Edirisinghe, M.J. and Evans, J.R.G., J. Mater. Sci. 22, 269277 (1987).CrossRefGoogle Scholar
8. Hunt, K. N., Evans, J. R. G., and Woodthorpe, J., J. Mater. Sci. 26, 292300 (1991).CrossRefGoogle Scholar
9. Idem, ibid., 26, 52295278 (1991).Google Scholar
10. Zhang, J. G., Edirisinghe, M. J., and Evans, J. R. G., J. Mater. Sci. 24, 840848 (1989).CrossRefGoogle Scholar
11. Hunt, K.N. and Evans, J.R.G., J. Mater. Sci. Lett. 10, 730733 (1991).CrossRefGoogle Scholar
12. Zhang, T., Evans, J. R. G., and Dutta, K. K., J. Euro. Ceram. Soc. 5, 303309 (1989).CrossRefGoogle Scholar
13. Zhang, T. and Evans, J.R.G., J. Euro. Ceram. Soc. 6, 1521 (1990).CrossRefGoogle Scholar
14. Zhang, T. and Evans, J.R.G., J. Euro. Ceram. Soc. 7, 155163 (1991).CrossRefGoogle Scholar
15. Edirisinghe, M. J. and Evans, J. R. G., Int. J. High Technol. Ceram. 2, 131 (1986).CrossRefGoogle Scholar
16. Zhang, T. and Evans, J.R.G., J. Am. Ceram. Soc. (in press).Google Scholar
17. Coxon, L.D. and White, J.R., Polym. Eng. Sci. 20, 230235 (1980).CrossRefGoogle Scholar
18. Morales, E. and White, J. R., J. Mater. Sci. 23, 36123622 (1988).CrossRefGoogle Scholar
19. Mills, N.J., J. Mater. Sci. 17, 558574 (1982).CrossRefGoogle Scholar
20. Aggarwala, B.D. and Saibel, E., Phys. Chem. Glasses 2, 137140 (1961).Google Scholar
21. Mills, N.J., Plast. Rubb. Proc. Appl. 3, 181188 (1983).Google Scholar
22. Hunt, K.N., Evans, J.R.G., Mills, N.J., and Woodthorpe, J., J. Mater. Sci. 26, 52295238 (1991).CrossRefGoogle Scholar
23. Karl, V.H., Eigenschaften von Polymeren 2, Makromol. Chem. 178, 20372047 (1977).CrossRefGoogle Scholar
24. Wunderlich, B., Macromolecular Physics (Academic Press, London, 1980), Vol. 3, pp. 9196.Google Scholar
25. Zhang, T. and Evans, I. R. G., unpublished research.Google Scholar