Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T21:07:52.479Z Has data issue: false hasContentIssue false

Solid state transitions of Bi2O3 nanoparticles

Published online by Cambridge University Press:  04 July 2014

Gerrit Guenther
Affiliation:
Institute of Materials Science, Technische Universität Darmstadt, Darmstadt 64287, Germany; and Otto Schott Institute of Materials Research, Friedrich Schiller University of Jena, Jena 07743, Germany
Olivier Guillon*
Affiliation:
Otto Schott Institute of Materials Research, Friedrich Schiller University of Jena, Jena 07743, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The solid-state phase transitions of bismuth(III) oxide (Bi2O3) nanoparticles were investigated by complementary methods such as differential scanning calorimetry, differential thermal analysis with combined thermogravimetry and mass spectrometry, and high-temperature x-ray diffraction as compacted nanopowder. At room temperature the particles resided in the β-phase, which is usually a metastable high-temperature phase of bulk Bi2O3. The complementary experimental methods were linked and a nanophase (tetragonal β-phase) → bulk-phase (monoclinic α-phase) transition was identified which was preceded by crystal growth and evaporation of O and C containing species. It was also shown that the atmosphere (more precisely its absolute pressure) has an influence on the transition behavior. An interpretation was proposed that successfully explains all observations from this work and from literature: A sudden destabilization takes place around 735 K due to the loss of the stabilizing, carbonized surface. This leads to the observed transformation to the bulk-phase. But if the particles are smaller than a certain, critical size in the nanorange and are not allowed to grow, they remain in the nanophase until they melt.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mei, Q.S. and Lu, K.: Melting and super heating of crystalline solids: From bulk to nanocrystals. Prog. Mater. Sci. 52, 1175 (2007).CrossRefGoogle Scholar
Rivest, B., Fong, L-K., Jain, P.K., Toney, M.F., and Alivisatos, A.P.: Size dependence of a temperature-induced solid-solid phase transition in copper(I) sulfide. J. Phys. Chem. Lett. 2, 2402 (2011).Google Scholar
Baldinozzi, G., Simeone, D., Gosset, D., and Dutheil, M.: Neutron diffraction study of the size-induced tetragonal to monoclinic phase transition in zirconia nanocrystals. Phys. Rev. Lett. 90, 216103216111 (2003).Google Scholar
Suresh, A., Mayo, M.J., Porter, W.D., and Rawn, C.J.: Crystallite and grain-size-dependent phase transformations in yttria-doped zirconia. J. Am. Ceram. Soc. 86, 360 (2003).Google Scholar
Navrotsky, A.: Energetics of oxide nanoparticles. Int. J. Quantum. Chem. 109, 2647 (2009).CrossRefGoogle Scholar
Navrotsky, A.: Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proc. Natl. Acad. Sci. U.S.A 101, 12096 (2004).CrossRefGoogle ScholarPubMed
Ma, Y., Castro, R.H., Zhou, W., and Navrotsky, A.: Surface enthalpy and enthalpy of water adsorption of nanocrystalline tin dioxide: Thermodynamic insight on the sensing activity. J. Mater. Res. 26, 848 (2011).CrossRefGoogle Scholar
Xu, F., Zhou, W., and Navrotsky, A.: Cadmium selenide: Surface and nanoparticle energetics. J. Mater. Res. 26, 720 (2011).CrossRefGoogle Scholar
Andrievskii, R. and Khachoyan, A.: Role of size-dependent effects and interfaces in physicochemical properties of consolidated nanomaterials. Russ. J. Gen. Chem. 80, 555 (2010).Google Scholar
Kumada, N., Kinomura, N., Woodward, P.M., and Sleight, A.W.: Crystal structure of Bi2O4 with β-Sb2O4-type structure. J. Solid State Chem. 116, 281 (1995).CrossRefGoogle Scholar
Jansen, M.: Darstellung von wasserfreiem KBiO3. Z. Naturforsch. 32b, 1340 (1977).CrossRefGoogle Scholar
Zav’yalova, A., Imamov, R., and Pinsker, Z.: Crystal structure of hexagonal BiO. Kristallografiya 10, 480 (1965).Google Scholar
Chen, X.L. and Eysel, W.: The stabilization of β-Bi2O3 by CeO2. J. Solid State Chem. 127, 128 (1996).Google Scholar
Cedomir, J., Zdujic, M., Poleti, D., Karanovic, L., and Mitric, M.: Structural and electrical properties of the 2Bi2O3·3ZrO2 system. J. Solid State Chem. 181, 1321 (2008).Google Scholar
Mehring, M.: From molecules to bismuth oxide-based materials: Potential homo- and heterometallic precursors and model compounds. Coord. Chem. Rev. 251, 974 (2007).Google Scholar
Zav’yalova, A.A. and Imamov, R.M.: Special features of the crystal structure of bismuth oxides. J. Struct. Chem. 13, 811 (1973).Google Scholar
Klinkova, L., Nikolaichik, V., Barkovskii, N., and Fedotov, V.: Thermal stability of Bi2O3. Russ. J. Inorg. Chem. 52, 1822 (2007).CrossRefGoogle Scholar
Medernach, J.W. and Snyder, R.L.: Powder diffraction patterns and structures of the bismuth oxides. J. Am. Ceram. Soc. 61, 494 (1978).Google Scholar
Yashima, M. and Ishimura, D.: Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3. Chem. Phys. Lett. 378, 395 (2003).Google Scholar
Hull, S., Norberg, S.T., Tucker, M.G., Eriksson, S.G., Mohn, C.E., and Stolen, S.: Neutron total scattering study of the delta and beta phases of Bi2O3. Dalton Trans. 40, 8737 (2009).Google Scholar
Blower, S.K. and Greaves, C.: The structure of β-Bi2O3 from powder neutron diffraction data. Acta Crystallogr., C 44, 587 (1988).Google Scholar
Fan, H.T., Pan, S.S., Teng, X.M., Ye, C., Li, G.H., and Zhang, L.D.: δ-Bi2O3 thin films prepared by reactive sputtering: Fabrication and characterization. Thin Solid Films 513, 142 (2006).Google Scholar
Huang, C.C., Leu, I.C., and Fung, K.Z.: Fabrication of δ-Bi2O3 nanowires. Electrochem. Solid State Lett. 8, A204 (2005).Google Scholar
Latha, K., Jin-Han, L., and Yuan-Ron, M.: Synthesis of bismuth oxide nanostructures by an oxidative metal vapour phase deposition technique. Nanotechnology 29, 295605 (2007).Google Scholar
Dong, W. and Zhu, C.: Optical properties of surface-modified Bi2O3 nanoparticles. J. Phys. Chem. Solids 64, 265 (2003).Google Scholar
Yang, B., Mo, M., Hu, H., Li, C., Yang, X., Li, Q., and Qian, Y.: A rational self-sacrificing template route to β-Bi2O3 nanotube arrays. Eur. J. Inorg. Chem. 2004, 1785 (2004).Google Scholar
Maedler, L. and Pratsinis, S.E.: Bismuth oxide nanoparticles by flame spray pyrolysis. J. Am. Ceram. Soc. 85, 1713 (2002).Google Scholar
Gao, F., Lu, Q., and Komarneni, S.: Protein-assisted synthesis of single-crystal nanowires of bismuth compounds. Chem. Comm. 4, 531 (2005).Google Scholar
Qiu, Y., Yang, M., Fan, H., Zuo, Y., Shao, Y., Xu, Y., Yang, X., and Yang, S.: Nanowires of α- and β-Bi2O3: Phase-selective synthesis and application in photocatalysis. Cryst. Eng. Comm. 13, 1843 (2011).Google Scholar
Liu, L., Jiang, J., Jin, S., Xia, Z., and Tang, M.: Hydrothermal synthesis of β-bismuth oxide nanowires from particles. Cryst. Eng. Comm. 13, 2529 (2011).CrossRefGoogle Scholar
Hu, H-X., Qiu, K-Q., and Xu, G-F.: Preparation of nanometer δ- and β-bismuth trioxide by vacuum vapor-phase oxidation. Trans. Nonferrous Met. Soc. China 16, 173 (2006).CrossRefGoogle Scholar
Rodriguez-Carvajal, J. and Roisnel, T.: Line broadening analysis using fullprof: Determination of microstructural properties. In European Powder Diffraction EPDIC 8, Uppsala, Sweden. Materials Science Forum; Andersson, Y., Mittemeijer, E.J., and Welzel, U., ed, (8th European Powder Diffraction Conference, Uppsala, Sweden), 2002; p. 123.Google Scholar
Risold, D., Hallstedt, B., Gauckler, L.J., Lukas, H.L., and Fries, S.G.: The bismuth-oxygen system. J. Phase Equilib. 16, 223 (1995).Google Scholar
Levin, E.M. and Roth, R.S.: Polymorphism of bismuth sesquioxide. I. Pure Bi2O3. J. Res. Natl. Bur. Stand., Sect. A 68, 189 (1964).CrossRefGoogle Scholar
Lei, Y.H. and Chen, Z.X.: Density functional study of the stability of various Bi2O3 surfaces. J. Chem. Phys. 138, 054703 (2013).Google Scholar
Guenther, G., Theissmann, R., and Guillon, O.: Size-dependent phase transformations in bismuth oxide nanoparticles, Part II: Melting and stability diagram. J. Phys. Chem. C (2014, accepted).Google Scholar
Fujino, S., Hwang, C., and Morinaga, K.: Surface tension of PbO-B2O3 and Bi2O3-B2O3 glass melts. J. Mater. Sci. 40, 2207 (2005).CrossRefGoogle Scholar
Guenther, G., Kruis, E., and Guillon, O.: Size-dependent phase transformations in bismuth oxide nanoparticles, Part I: Synthesis and evaporation. J. Phys. Chem. C (2012, accepted).Google Scholar
Barreca, D., Morazzoni, F., Rizzi, G.A., Scotti, R., and Tondello, E.: Molecular oxygen interaction with Bi2O3: A spectroscopic and spectromagnetic investigation. Phys. Chem. Chem. Phys. 3, 1743 (2001).CrossRefGoogle Scholar
Huang, L., Li, G., Yan, T., Zheng, J., and Li, L.: Uncovering the structural stabilities of the functional bismuth containing oxides: A case study of α-Bi2O3 nanoparticles in aqueous solutions. New J. Chem. 35, 197 (2011).Google Scholar
Schierning, G., Theissmann, R., Wiggers, H., Sudfeld, D., Ebbers, A., Franke, D., Witusiewicz, V.T., and Apel, M.: Microcrystalline silicon formation by silicon nanoparticles. J. Appl. Phys. 103, 084305 (2008).Google Scholar
Levin, E.M. and Roth, R.S.: Polymorphism of bismuth sesquioxide. II. Effect of oxide additions on polymorphism of Bi2O3. J. Res. Natl. Bur. Stand., Sect. A 68, 197 (1964).Google Scholar
Kaptay, G.: Nano-Calphad: Extension of the Calphad method to systems with nano-phases and complexions. J. Mater. Sci. 47, 8320 (2012).Google Scholar
Lamoreaux, R.H. and Hildebrand, D.: High-temperature vaporization behavior of oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, Ti, Si, Ge, Sn, Pb, Zn, Cd, and Hg. J. Phys. Chem. Ref. Data 10, 419 (1987).Google Scholar
Eriksson, G.: Thermodynamic studies of high-temperature equilibria. XII. SOLGASMIX, a computer program for calculation of equilibrium compositions in multiphase systems. Chem. Scr. 8, 100 (1975).Google Scholar
Deng, H., Hao, W., Xu, H., and Wang, C.: Effect of intrinsic oxygen vacancy on the electronic structure of γ-Bi2O3: First-principles calculations. J. Phys. Chem. C 116, 1251 (2012).Google Scholar
Wu, Y. and Lu, G.: The roles of density-tunable surface oxygen vacancy over bouquet-like Bi2O3 in enhancing photocatalytic activity. Phys. Chem. Chem. Phys. 16, 4165 (2014).CrossRefGoogle ScholarPubMed
Xu, C., Jiang, Y., Yi, D., Sun, S., and Yu, Z.: Environment-dependent surface structures and stabilities of SnO2 from the first principles. J. Appl. Phys. 111, 063504 (2012).Google Scholar
Overbury, S.H., Bertrand, P.A., and Somorhai, G.A.: Surface composition of binary systems. Prediction of surface phase diagrams of solid solutions. Chem. Rev. 75, 547 (1975).CrossRefGoogle Scholar
Fischer, F.D., Waitz, T., Vollath, D., and Simha, N.K.: On the role of surface energy and surface stress in phase-transforming nanoparticles. Prog. Mater. Sci. 53, 481 (2008).Google Scholar
Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).Google Scholar
Godinho, K.G., Walsh, A., and Watson, G.W.: Energetic and electronic structure analysis of intrinsic defects in SnO2. J. Phys. Chem. C 113, 439 (2009).Google Scholar
Guenther, G., Schierning, G., Theissmann, R., Kruk, R., Schmechel, R., Baehtz, C., and Prodi-Schwab, A.: Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electrical properties. J. Appl. Phys. 104, 034501 (2008).Google Scholar
Boyapati, S., Wachsman, E.D., and Jiang, N.: Effect of oxygen sublattice ordering on interstitial transport mechanism and conductivity activation energies in phase-stabilized cubic bismuth oxides. Solid State Ionics 140, 149 (2001).Google Scholar
Hull, S., Norberg, S.T., Tucker, M.G., Eriksson, S.G., and Mohn, C.E.: Neutron total scattering study of the delta and beta phases of Bi2O3. Dalton Trans. 40, 8737 (2009).Google Scholar