Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T14:51:29.876Z Has data issue: false hasContentIssue false

Solid state reactions between Pd and Si induced by high energy ball milling

Published online by Cambridge University Press:  03 March 2011

D.L. Zhang
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213–3890
T.B. Massalski
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213–3890
Get access

Abstract

Solid state reactions induced by high energy ball milling between Pd and Si have been studied. X-ray diffractometry and differential scanning calorimetry have been used to characterize the resulting phases. During milling, Pd and Si react by diffusion to form different phases depending on the Si content in the starting mixture. With a low Si content of 19 at. %, an amorphous phase forms of the same composition. On continued milling, this amorphous phase partially crystallizes into Pd9Si2 and Pd2Si compounds. With the Si content equal to or higher than 33 at. %, no amorphous phases were observed. Instead, the Pd2Si phase is produced. For powder composition corresponding to the stoichiometric compound Pd2Si (33 at. % Si), the Pd2Si forms and remains stable during further milling. With Si content equal to or higher than 50 at. %, the initially produced Pd2Si is destabilized by a reaction with the remaining Si to form PdSi, which is a metastable phase at the temperature of ball milling. It is very unlikely that an amorphous phase of a composition equal to or higher than 33 at. % Si could be produced by ball milling in the Pd-Si system. This is because the Pd2Si phase forms very easily through the reaction between Pd and Si, and this reaction competes effectively with glass formation.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Koch, C. C., Cavin, O. B., McKamey, C. G., and Scarbrough, J. O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
2New Materials by Mechanical Alloying Technique, edited by Arzt, E. and Schultz, L. (Information Sqellschaft, Verlay, 1988).Google Scholar
3Weeber, A. W. and Bakker, H., Phys. B 153, 93 (1988).CrossRefGoogle Scholar
4Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
5Koch, C. C., Annu. Rev. Mater. Sci. 19, 121 (1989).CrossRefGoogle Scholar
6Shultz, L., Mater. Sci. Eng. 97, 15 (1988).CrossRefGoogle Scholar
7Yavari, A. R. and Desre, P. J., Mater. Sci. Eng. A 134, 1315 (1991).CrossRefGoogle Scholar
8Tsur, B. Y. and Nicolet, M. A., Appl. Phys. Lett. 37, 708 (1980).CrossRefGoogle Scholar
9Hutchins, G. A. and Shepala, A., Thin Solid Films 18, 343 (1973).CrossRefGoogle Scholar
10Huang, L. S., Kennedy, E. F., Palmstrom, C. J., Olowalafe, J. O., Mayer, J. W., and Rhodes, H., Appl. Phys. Lett. 47, 236 (1985).CrossRefGoogle Scholar
11Cheung, N. W., Lan, S. S., Nicolet, M. A., Mayer, J. W., and Sheng, T. T., in Proc. of Symp. on Thin Films–Interfaces and Interactions, edited by Baglin, J. E. E. and Poate, J. M. (The Electrochemical Society Inc., Princeton, NJ, 1980), p. 494.Google Scholar
12Eddman, F., Cytermann, C., Brener, R., Eizenberg, M., and Weil, R., J. Appl. Phys. 71, 289 (1992).Google Scholar
13Tu, K. N. and Mayer, J. W., in Thin Films-Interdiffusion and Reactions, edited by Poate, J. M., Tu, K. N., and Mayer, J. W. (John Wiley & Sons, New York, 1978), p. 359.Google Scholar
14Magini, M., Basili, N., Burgio, N.. Ennas, G., Martelli, S., Pudella, F., Paradiso, E., and Susini, P., Mater. Sci. Eng. A 134, 1406 (1991).CrossRefGoogle Scholar
15Magini, M., Burgio, N., Martelli, S., Padella, F., Paradiso, E., and Ennas, G., J. Mater. Sci. 26, 3969 (1991).CrossRefGoogle Scholar
16Politis, C. and Thompson, J. R., in Science and Technology of Rapidly Quenched Alloys, edited by Tenhover, M., Johnson, W. L., and Tanner, L.E. (Mater. Res. Soc. Symp. Proc. 80, Pittsburgh, PA, 1987), p. 91.Google Scholar
17Nasu, T., Nagaoka, K., Takahashi, S., Fukunaga, T., and Suzuki, K., Mater. Trans. JIM 30, 146 (1989).CrossRefGoogle Scholar
18Duwez, P., Willens, R. H., and Crewdson, R. C., J. Appl. Phys. 36, 2267 (1965).CrossRefGoogle Scholar
19Baxi, H. C. and Massalski, T. B., J. Phase Equilibria 125, 349 (1991).CrossRefGoogle Scholar
20Barrett, C. S. and Massalski, T. B., Structure of Metals, 3rd ed. (McGraw-Hill, New York, 1966), p. 155.Google Scholar
21Mizutani, U., Hartwig, K. T., Massalski, T. B., and Hopper, R. W., Phys. Rev. Lett. 41, 661 (1978).CrossRefGoogle Scholar
22Zhang, D. L., Massalski, T. B., and Paruchuri, M. R., unpublished research.Google Scholar
23Bene, B. W., J. Appl. Phys. 61, 1826 (1987).CrossRefGoogle Scholar
24Gösele, U. and Tu, K. N., J. Appl. Phys. 66, 2619 (1989).CrossRefGoogle Scholar
25Nemanich, R. J., Tsai, C. C., Stafford, B. L., Abelson, J. R., and Sigmon, T. W., in Thin Films and Interfaces II, edited by Baglin, J. E. E., Campbell, D. R., and Chu, W.K. (Mater. Res. Soc. Symp. Proc. 25, Elsevier Science Publishing, New York, 1984), p. 9.Google Scholar
26Merk, N., Gaffet, E., and Martin, G., J. Less-Comm. Met. 153, 299 (1989).CrossRefGoogle Scholar
27Gaffet, E., Merk, N., Martin, G., and Bigot, J., J. Less-Comm. Met. 145, 251 (1988).CrossRefGoogle Scholar
28Massobrio, C., Pontikis, V., Doan, N. V., and Martin, G., J. Nucl. Mater. 179–181, 921 (1991).CrossRefGoogle Scholar