Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T13:00:03.532Z Has data issue: false hasContentIssue false

Solid solutions of AlN and SiC grown by plasma-assisted, gas-source molecular beam epitaxy

Published online by Cambridge University Press:  31 January 2011

R.S. Kern
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
L.B. Rowland
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
S. Tanaka
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
R.F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
Get access

Abstract

Solid solutions of aluminum nitride (AlN) and silicon carbide (SiC), the only intermediate phases in their respective binary systems, have been grown at 1050 °C on α(6H)-SiC(0001) substrates cut 3–4° off-axis toward [11$\overline 1$0] using plasma-assisted, gas-source molecular beam epitaxy. A film having the approximate composition of (AlN)0.3(SiC)0.7, as determined by Auger spectrometry, was selected for additional study and is the focus of this note. High resolution transmission electron microscopy (HRTEM) revealed that the film was monocrystalline with the wurtzite (2H) crystal structure.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fisher, G.R. and Barnes, P.Philos.Mag. B 61, 217 (1990).CrossRefGoogle Scholar
2Sitar, Z.Paisley, M. J. and Davis, R. F. Annual Progress Report, ONR Contract N00014-86-K-0686,June 1, 1989.Google Scholar
3Strite, S. and Makoc, H. private communication.Google Scholar
4Slack, G.A., J . Phys. Chem. Solids 34, 321 (1973).CrossRefGoogle Scholar
5Yim, W.M.Stofko, E.J., Zanzucci, P.J.Pankove, J.I.Ettenberg, M. and Gilbert, S. L.J. Appl. Phys. 44, 292 (1973).CrossRefGoogle Scholar
6Matignon, C.Acad, C. R.. Sci. 178, 1615 (1924).Google Scholar
7Rafaniello, W.Cho, K., and Vikar, A. V.J . Mater. Sci. 16, 3479 (1981).CrossRefGoogle Scholar
8Rafaniello, W.Plinchta, M. R. and Vikar, A. V.J. Am. Ceram. Soc. 66, 272 (1983).CrossRefGoogle Scholar
9Ruh, R. and Zangvil, A.J . Am. Ceram. Soc. 65, 260 (1982).CrossRefGoogle Scholar
10Zangviland, A.Ruh, R.Mater. Sci. Eng. 71, 159 (1985).Google Scholar
11Zangvil, A. and Ruh, R.J. Am. Ceram. Soc. 71, 884 (1988).CrossRefGoogle Scholar
12Zangvil, A. and Ruh, R. in Silicon Carbide 87 (The American Ceramic Society, Westerville, OH, 1989), pp. 6382.Google Scholar
13Kuo, S. and Vikar, A. V.J . Am. Ceram. Soc. 73, 2460 (1990).CrossRefGoogle Scholar
14Czekaj, C. L.Hackney, M. L. J.Hurley, W. J. Jr. , Interrante, L. V.Sigel, G.A.Schields, P.J., and Slack, G.A.J. Am. Ceram. Soc. 73, 352 (1990).CrossRefGoogle Scholar
15Nurmagomedov, Sh. A.Pitkin, A. N.Razbegaev, V. N.Safaraliev, G. K., Tairov, Yu.M ., and Tsvetkov, V. F.Sov. Phys.Semi cond. 23, 100 (1989).Google Scholar
16Jenkins, I.Irvine, K. G.Spencer, M. G.Dmitriev, V. and Chen, N. (in press).Google Scholar
17Rowland, L. B.Tanaka, S., Kern, R. S. and Davis, R. F. in Proceedings of the Fourth International Conference on Amorphous and Crystalline Silicon Carbide (Springer-Verlag, Berlin, 1992), in press.Google Scholar
18Zalar, A.Thin Solid Films 124, 223 (1985).CrossRefGoogle Scholar