Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T05:51:18.217Z Has data issue: false hasContentIssue false

Sol-gel-derived titanium oxide–cerium oxide biocompatible nanocomposite film for urea sensor

Published online by Cambridge University Press:  31 January 2011

B.D. Malhotra*
Affiliation:
Biomolecular Electronics & Conducting Polymer Research Group, National Physical Laboratory, New Delhi-110012, India
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Sol-gel-derived biocompatible titanium oxide–cerium oxide (TiO2–CeO2) nanocomposite film was deposited onto indium tin oxide (ITO)-coated glass substrate by the dip-coating method. This nanobiocomposite film has been characterized using x-ray diffraction, Fourier transform infrared, atomic force microscope, and electrochemical techniques, respectively. The particle size of the TiO2–CeO2 nanobiocomposite film was found to be 23 nm. The urea biosensor fabricated by immobilizing mixed enzyme [urease (Urs) and glutamate dehydrogenase (GLDH)] on this nanobiocomposite showed a response time of 10 s, sensitivity as 0.9165 μAcm−2mM−1, detection limit of 0.166 μM, and negligible effect due to interferants uric acid, cholesterol, glucose, and ascorbic acid. The value of Michaelis–Menten constant (Km) estimated using Lineweaver–Burke plot as 4.8 mM indicated enhancement in the affinity and/or activity of enzyme attached to their nanobiocomposite. This bioelectrode retained 95% of enzyme activity after 6 months at 4 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wang, J.: Electrochemical glucose biosensors. Chem. Rev. 108, 814 (2007).CrossRefGoogle ScholarPubMed
2.Lee, H., Yoon, S.W., Kim, E.J., and Park, J.: In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials. Nano Lett. 7, 778 (2007).CrossRefGoogle ScholarPubMed
3.Singh, S.P., Arya, S.K., Pandey, P., Malhotra, B.D., Saha, S., Sreenivas, K., and Gupta, V.: Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film. Appl. Phys. Lett. 91, 063901 (2007).CrossRefGoogle Scholar
4.Khan, R., Kaushik, A., Solanki, P.R., Ansari, A.A., Pandey, M.K., and Malhotra, B.D.: Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal. Chim. Acta 616, 207 (2008).CrossRefGoogle ScholarPubMed
5.Wang, J.X., Sun, X.W., Wei, A., Lei, Y., Cai, X.P., Li, C.M., and Dong, Z.L.: Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 88, 233106 (2006).CrossRefGoogle Scholar
6.Yang, Y., Yang, H., Yang, M., Liu, Y., Shen, G., and Yu, R.: Amperometric glucose biosensor based on a surface treated nanoporous ZrO2/Chitosan composite film as immobilization matrix. Anal. Chim. Acta 525, 213 (2004).CrossRefGoogle Scholar
7.Zong, S., Cao, Y., Zhou, Y., and Ju, H.: Zirconia nanoparticles enhanced grafted collagen tri-helix scaffold for unmediated bio-sensing of hydrogen peroxide. Langmuir 22, 8915 (2006).CrossRefGoogle Scholar
8.Topoglidis, E., Astuti, Y., Duriaux, F., Gratzel, M., and Durrant, J.R.: Direct electrochemistry and nitric oxide interaction of heme proteins adsorbed on nanocrystalline tin oxide electrodes. Langmuir 19, 6894 (2003).CrossRefGoogle Scholar
9.Liu, S. and Chen, A.: Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing. Langmuir 21, 8409 (2005).CrossRefGoogle ScholarPubMed
10.Shi, Y.T., Yuan, R., Chai, Y.Q., and He, X.L.: Development of an amperometric immunosensor based on TiO2 nanoparticles and gold nanoparticles. Electrochim. Acta 52, 3518 (2007).CrossRefGoogle Scholar
11.Xu, X., Tian, B., Zhang, S., Kong, J., Zhao, D., and Liu, B.: Electrochemistry and biosensing reactivity of heme proteins adsorbed on the structure-tailored mesoporous Nb2O5 matrix. Anal. Chim. Acta 519, 31 (2004).CrossRefGoogle Scholar
12.Feng, K.J., Yang, Y.H., Wang, Z.J., Jiang, J.H., Shen, G.L., and Yu, R.Q.: A nano-porous CeO2/Chitosan composite film as the immobilization matrix for colorectal cancer DNA sequence-selective electrochemical biosensor. Talanta 70, 561 (2006).CrossRefGoogle Scholar
13.Yu, J. and Ju, H.: Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor deposition method. Anal. Chem. 74, 3579 (2002).CrossRefGoogle ScholarPubMed
14.Suzuki, T., Kosacki, I., and Anderson, H.U.: Defect and mixed conductivity in nanocrystalline doped cerium oxide. J. Am. Ceram. Soc. 85, 1492 (2002).CrossRefGoogle Scholar
15.Kosacki, I., Suzuki, T., Petrovsky, V., and Anderson, H.U.: Electrical conductivity of nanocrystalline ceria and zirconia thin films. Solid State Ionics 136–137, 1225 (2000).CrossRefGoogle Scholar
16.Nakagawa, K., Murata, Y., Kishida, M., Adachi, M., Hiro, M., and Susa, K.: Formation and reaction activity of CeO2 nanoparticles of cubic structure and various shaped CeO2–TiO2 composite nano-structures. Mater. Chem. Phys. 104, 30 (2007).CrossRefGoogle Scholar
17.Suzuki, T., Kosacki, I., and Anderson, H.U.: Electrical conductivity and lattice defects in nanocrystalline cerium oxide thin films. J. Am. Ceram. Soc. 84, 2007 (2001).CrossRefGoogle Scholar
18.Ghodsi, F.E., Tepehan, F.Z., and Tepehan, G.G.: Influence of pH on the optical and structural properties of spin coated CeO2–TiO2 thin films prepared by sol-gel process. Surf. Sci. 601, 4497 (2007).CrossRefGoogle Scholar
19.Ghodsi, F.E., Tepehan, F.Z., and Tepehan, G.G.: Optical and electrochromic properties of sol-gel made CeO2–TiO2 thin films. Electrochim. Acta 44, 3127 (1999).CrossRefGoogle Scholar
20.Avellaneda, C.O. and Pawlicka, A.: Preparation of transparent CeO2-TiO2 coatings for electrochromic devices. Thin Solid Films 335, 245 (1998).CrossRefGoogle Scholar
21.Hong, Z., Zhang, P., Liu, A., Chen, L., Chen, X., and Jing, X.: composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nano-particles. J. Biomed. Mater. Res. A 81, 515 (2007).CrossRefGoogle Scholar
22.Hussain, N.S., Lopes, M.A., and Santos, J.D.: A comparative study of CaO–P2O5–SiO2 gels prepared by a sol-gel method. Mater. Chem. Phys. 88, 5 (2004).CrossRefGoogle Scholar
23.Jia, N.Q., Zhou, Q., Liu, L., Yan, M.M., and Jiang, Z.Y.: Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol-gel-derived tin oxide/gelatin composite films. J. Electroanal. Chem. 580, 213 (2005).CrossRefGoogle Scholar
24.Liu, S.Q., Xu, J.J., and Chen, H.Y.: ZrO2 gel-derived DNA-modified electrode and the effect of lanthanide on its electron transfer behavior. Bioelectrochemistry 57, 149 (2002).CrossRefGoogle ScholarPubMed
25.Gambhir, A., Gerard, M., Mulchandani, A.K., and Malhotra, B.D.: Co-immobilization and characterization of urease and glutamate dehydrogenase in electro-chemically prepared polypyrrole-poly-vinylsulphonate films. Appl. Biochem. Biotechnol. 96, 249 (2001).CrossRefGoogle Scholar
26.Topoglidis, E., Cass, A.E.G., Gilardi, G., Sadeghi, S., Beautmont, N., and Durrant, J.R.: Protein adsorption on nanocrystalline TiO2 films: An immobilization strategy for bioanalytical devices. Anal. Chem. 70, 5111 (1998).CrossRefGoogle ScholarPubMed
27.Zhang, Y., He, P., and Hu, N.: Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: Direct electrochemistry and bioelectrocatalysis. Electrochim. Acta 49, 1981 (2004).CrossRefGoogle Scholar
28.Kim, H.J., Yoon, S.H., Choi, H.N., Lyu, Y.K., and Lee, W.Y.: Amperomatric glucose biosensor based on sol-gel derived zirco-nia/nafion composite film as encapsulation matrix. Bull. Korean Chem. Soc. 27, 65 (2006).Google Scholar
29.Chen, J.C., Chou, J.C., Sun, T.P., and Hsiung, S.K.: Portable urea biosensor based on the extended-gate field effect transistor. Sens. Actuators B 91, 180 (2003).CrossRefGoogle Scholar
30.Reyes-Coronado, D., Rodriguez-Gattorno, G., Espinosa Pesqueira, M.E., Cab, C., de Coss, R., and Oskam, G.: Phase-pure TiO2 nanoparticles: Anatase, brookite and rutile. Nanotechnoloffv 19, 145605 (2008).CrossRefGoogle ScholarPubMed
31.Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed. (John Wiley Interscience, New York, 1978).Google Scholar
32.Cheng, Z.H., Yasukawa, A., Kandori, K., and Ishikawa, T.: FTIR study of adsorption of CO2 on nonstoichiometric calcium hydroxyapatite. Langmuir 14, 6681 (1998).CrossRefGoogle Scholar
33.Chen, X., Wang, Y., Zhou, J., Yan, W., Li, X., and Hu, J.J.: Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film. Anal. Chem. 80, 2133 (2008).CrossRefGoogle ScholarPubMed
34.Kamin, R.A. and Wilson, G.S.: Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal. Chem. 52, 1198 (1980).CrossRefGoogle Scholar
35.Ansari, A.A., Solanki, P.R., and Malhotra, B.D.: Sol-gel derived nanostructured cerium oxide film for glucose sensor. Appl. Phys. Lett. 93, 263901 (2008).CrossRefGoogle Scholar
36.Lee, W.Y., Lee, K.S., Kim, T.H., Shin, M.C., and Park, J.K.: Micro-fabricated conductometric urea biosensor based on sol-gel immobilized urease. Electroanalysis 12, 78 (2000).3.0.CO;2-B>CrossRefGoogle Scholar
37.Sahney, R., Puri, B.K., and Anand, S.: Enzyme coated glass pH-electrode: Its fabrication and applications in the determination of urea in blood samples. Anal. Chim. Acta 542, 157 (2005).CrossRefGoogle Scholar
38.Lee, W.Y., Kim, S.R., Kim, T.H., Lee, K.S., Shin, M.C., and Park, J.K.: twb Sol-gel-derived thick-film conductometric biosensor for urea determination in serum. Anal. Chim. Acta 404, 195 (2000).CrossRefGoogle Scholar
39.Alqasaimeh, M.S., Heng, L.Y., and Ahmad, M.: A urea biosensor from stacked sol-gel films with immobilized nile blue chromoionophore and urease enzyme. Sensors 7, 2251 (2007).CrossRefGoogle ScholarPubMed