Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T05:41:11.118Z Has data issue: false hasContentIssue false

Sol-gel Synthesis of Porous Crystalline TiO2–P2O5 Oxide with Thermal Stability

Published online by Cambridge University Press:  31 January 2011

Donglin Li
Affiliation:
Institute of Energy Electronics, National Institute of Advanced Industrial Science and Technology (AIST), Umezono, 1-1-1, Tsukuba, 305-8568 Japan
Haoshen Zhou
Affiliation:
Institute of Energy Electronics, National Institute of Advanced Industrial Science and Technology (AIST), Umezono, 1-1-1, Tsukuba, 305-8568 Japan
Mitsuhiro Hibino
Affiliation:
Institute of Energy Electronics, National Institute of Advanced Industrial Science and Technology (AIST), Umezono, 1-1-1, Tsukuba, 305-8568 Japan
Itaru Honma
Affiliation:
Institute of Energy Electronics, National Institute of Advanced Industrial Science and Technology (AIST), Umezono, 1-1-1, Tsukuba, 305-8568 Japan
Get access

Abstract

Porous TiO2–P2O5 oxide was synthesized by the sol-gel method in the presence of tri-block copolymer (EO)20(PO)70(EO)20 (Pluronic123) in queous solution. The TiO2 nanocrystals with anatase structure precipitated in the as-synthesized TiO2–P2O5 materials at 80°C, considerably lower than that for traditional heat treatment in the solid state, which maintained a stable size of 3.6–4 nm upon calcinations below 500°C. It is believed that P2O5 glass phase prevents the coarsening of TiO2 nanocrystals below 500°C. The mixed oxide exhibited a specific surface area of 170–200 m2/g after calcining in the temperature range of 300–500°C.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kresge, C.T., Leonowicy, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S., Nature 359, 710 (1992).CrossRefGoogle Scholar
2.Yang, P., Zhao, D., Margolese, D.I., Bates, B.F., and Stucky, G.D., Nature 396, 152 (1998).CrossRefGoogle Scholar
3.Soler-Illia, G.J. de A.A., Louis, A., and Sanchez, C., Chem. Mater. 14, 750 (2002).CrossRefGoogle Scholar
4.Stone, V.F. Jr and Davis, R.J., J. Chem. Mater. 10, 1468 (1998).CrossRefGoogle Scholar
5.Cheng, W., Baudrin, E., Dunn, B., and Zink, J.I.. J. Mater. Chem. 11, 92 (2001).CrossRefGoogle Scholar
6.Blin, J.L., Flamant, R., and Su, B.L., Int. J. Inorg. Mater. 3, 959 (2001).CrossRefGoogle Scholar
7.Antonelli, D.M. and Ying, Y.J., Angew. Chem. Int. Ed. Engl. 34, 2014 (1995).CrossRefGoogle Scholar
8.On, D., Langmuir 15, 8561 (1999).CrossRefGoogle Scholar
9.Khushalani, D., Qzin, G.A., and Kuperman, A., J. Mater. Chem. 9, 1491 (1999).CrossRefGoogle Scholar
10.Wang, Y., Tang, X., Yin, L., Huang, W., Hacohen, Y.R., and Gedanken, A., Adv. Mater. 12, 1183 (2000).3.0.CO;2-X>CrossRefGoogle Scholar
11.Hwang, Y.K., Lee, K-C., and Kwon, Y-U., Chem. Commun. 1738 (2001).CrossRefGoogle Scholar
12.Alberius, P.C.A., Frindell, K.L., Hayward, R.C., Kramer, E.J., Stucky, G.D., and Chmelka, B.F., Chem. Mater. 14, 3284 (2002).CrossRefGoogle Scholar
13.Yun, H.S., Miyazawa, K., Zhou, H.S., Honma, I., and Kuwabara, M., Adv. Mater. 13, 1377 (2001).3.0.CO;2-T>CrossRefGoogle Scholar
14.Jimenez-Jimenez, J., Maireles-Torres, P., Olivera-Pastor, P., Rodriguez-Castellon, E., Jimenez-Lopez, A., Jones, D.J., and Roziere, J., Adv. Mater. 10, 812 (1998).3.0.CO;2-A>CrossRefGoogle Scholar
15.Mal, N.K., Ichikawa, S., and Fujiwara, M., Chem. Commun. 112 (2002).CrossRefGoogle Scholar
16.Tiemann, M. and Froba, M., Chem. Commun. 406 (2002).CrossRefGoogle Scholar
17.Bhaumik, A. and Inagaki, S., J. Am. Chem. Soc. 123, 691 (2001).CrossRefGoogle Scholar