Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T19:18:21.810Z Has data issue: false hasContentIssue false

Sol-gel Synthesis of Li–ZrSiO4

Published online by Cambridge University Press:  31 January 2011

Heriberto Pfeiffer
Affiliation:
Instituto Nacional de Investigaciones Nucleares, C.P. 11801, Mexico D.F., Mexico, and Departamento de Química, Universidad AutÓnoma Metropolitana-Iztapalapa, C.P. 09340, Mexico D.F., Mexico
Pedro Bosch
Affiliation:
Departamento de Química, Universidad AutÓnoma Metropolitana-Iztapalapa, C.P. 09340, Mexico D.F., Mexico
Jose A. Odriozola
Affiliation:
Instituto de Ciencias de Materiales, Universidad de Sevilla, 41092, Sevilla, Spain
Alberto Lopez
Affiliation:
Instituto de Ciencias de Materiales, Universidad de Sevilla, 41092, Sevilla, Spain
Jorge A. Ascencio
Affiliation:
Instituto Nacional de Investigaciones Nucleares, C.P. 11801, Mexico D.F., Mexico
Silvia Bulbulian*
Affiliation:
Instituto Nacional de Investigaciones Nucleares, C.P. 11801, Mexico D.F., Mexico
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Li–ZrSiO4 was synthesized by the sol-gel method. Reactions were performed with different Li:Zr molar ratios: 1, 3, 5, and 6. Cell parameters changed as follows: a0 decreased and c0 increased as the Li:Zr molar ratio increased. The x-ray photoelectron spectroscopy analysis showed two kinds of oxygen atoms. The first one was attributed to ZrSiO4 oxygens. The second one was attributed to Li–O bonds. All these results were supported by a theoretical analysis. It was concluded that lithium atoms were held in interstitial positions of the ZrSiO4 structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pfeiffer, H., Bosch, P., and Bulbulian, S., J. Nucl. Mater. 257, 309 (1998).CrossRefGoogle Scholar
2.Johnson, C.E. and Clemmer, R. G., J. Nucl. Mater. 103–104, 547 (1981).CrossRefGoogle Scholar
3.Johnson, C.E., Kummerer, K.R., and Roth, E., J. Nucl. Mater. 155–157, 188 (1988).CrossRefGoogle Scholar
4.Jimenez-Becerril, J., Bosch, P., and Bulbulian, S., J. Nucl. Mater. 185, 304 (1991).CrossRefGoogle Scholar
5.Hardy, A.B. and Rhine, W.E., Chem. Proc. Adv. Mat. 51, 577 (1992).Google Scholar
6.Mori, T., Yamamura, H., Kobayashi, H., and Mitamura, T., J. Mater. Sci. 28, 4970 (1993).CrossRefGoogle Scholar
7.Muller, O. and Roy, R., Chem. Non-Metallic Mater. 4, 83 (1974).Google Scholar
8.Hyde, B.G. and Andersson, S., Inorganic Crystal Structures, 4th ed. (John Wiley & Sons, New York, 1989), pp. 272304.Google Scholar
9.Lin, M.H. and Wang, M.C., J. Mater. Sci. 30, 2716 (1995).CrossRefGoogle Scholar
10.Monros, G., Carda, J., Tena, M.A., Escribano, P., and Alarcon, J., J. Mater. Sci. 27, 351 (1992).CrossRefGoogle Scholar
11.Monros, G., Carda, J., Escribano, P., and Alarcon, J., J. Mater. Sci. 9, 184 (1990).Google Scholar
12.Khon, W. and Sham, L.J., Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
13.Ackland, G.J., Phys. Rev. Lett. 80, 2333 (1998).CrossRefGoogle Scholar
14.Cerius, , Quantum Mechanics-Physics of Molecular Simulation Inc. (San Diego, CA, 1997).Google Scholar
15.Turner, C.W., Clatworthy, B.C., and Gin, A.Y.H, International Symposium on Fabrication & Properties of Lithium Ceramics (Canadon Fuson Fuels Tech. Project, Canada, 1987), p. 20.Google Scholar