Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T12:56:46.514Z Has data issue: false hasContentIssue false

Soft x-ray absorption spectroscopy study of electrochemically formed passive layers on AISI 304 and 316L stainless steels

Published online by Cambridge University Press:  31 January 2011

M. F. López
Affiliation:
Centro Nacional de Investigaciones Metalú;rgicas (CSIC), Avda. Gregorio del Amo 8, Madrid 28040, Spain
A. Gutiérrez
Affiliation:
Centro Nacional de Investigaciones Metalú;rgicas (CSIC), Avda. Gregorio del Amo 8, Madrid 28040, Spain
C. L. Torres
Affiliation:
Centro Nacional de Investigaciones Metalú;rgicas (CSIC), Avda. Gregorio del Amo 8, Madrid 28040, Spain
J. M. Bastidas
Affiliation:
Centro Nacional de Investigaciones Metalú;rgicas (CSIC), Avda. Gregorio del Amo 8, Madrid 28040, Spain
Get access

Abstract

The structure and composition of passive films electrochemically formed on AISI 304 and 316L stainless steels in a chloride-containing solution have been studied by soft x-ray absorption spectroscopy. Soft x-ray absorption spectra were taken at the oxygen 1s edge and at the transition metals (Cr, Fe, Ni) 2p edges, making it possible to determine the main contributions to the passive film's composition. The soft x-ray absorption spectra at the Cr 2p edges indicate that in all cases the passive film is mainly formed by Cr2O3. Spectra at the Fe and Ni 2p edges exhibit no significant contribution of Ni and Fe oxides to the passive layer composition. However, differences in spectral shape with respect to metallic Ni and Fe suggest the presence of a small amount of hydroxides, which is maximum for the AISI 304 stainless steel polarized at the lowest scan rate. The spectra at the O 1s edges confirm the results obtained at the transition metal edges.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brooks, A.R., Clayton, C.R., Doss, K., and Lu, Y.C., J. Electrochem. Soc. 133, 2459 (1986).CrossRefGoogle Scholar
2.Lorang, G., Da Cunha Belo, M., Simoes, A. M.P, and Ferreira, M. G.S, J. Electrochem. Soc. 141, 3347 (1994).CrossRefGoogle Scholar
3.Olefjord, I. and Wegrelius, L., Corros. Sci. 31, 89 (1990).CrossRefGoogle Scholar
4.Mathieu, H. J. and Landolt, D., Corros. Sci. 26, 547 (1986).CrossRefGoogle Scholar
5.Kirchheim, R., Heine, B., Fischmeister, H., Hofmann, S., Knote, H., and Stolz, U., Corros. Sci. 29, 899 (1989).CrossRefGoogle Scholar
6.Asami, K., Hashimoto, K., and Shimodaira, S., Corros. Sci. 18, 151 (1978).CrossRefGoogle Scholar
7.Maurice, V., Yang, W. P., and Marcus, P., J. Electrochem. Soc. 143, 1182 (1996).CrossRefGoogle Scholar
8.Tjong, S.C., Hoffmann, R. W., and Yeager, E.B., J. Electrochem. Soc. 129, 1662 (1982).CrossRefGoogle Scholar
9.Brüesch, P., Müller, K., Atrens, A., and Neff, H., Appl. Phys. A 38, 1 (1985).CrossRefGoogle Scholar
10.Hultquist, G., Leygraf, C., and Brune, D., J. Electrochem. Soc. 131, 1773 (1984).CrossRefGoogle Scholar
11.Penn, D.R., Phys. Rev. B 13, 5248 (1976).CrossRefGoogle Scholar
12.Abbate, M., Goedkoop, J. B., de Groot, F.M.F., Grioni, M., Fuggle, J. C., Hofmann, S., Petersen, H., and Sacchi, M., Surf. Interface Anal. 18, 65 (1992).CrossRefGoogle Scholar
13.Schroeder, S.L. M., Solid State Commun. 98, 405 (1996).CrossRefGoogle Scholar
14.Fuggle, J. C. and Inglesfield, J. E., in Unoccupied Electronic States (Springer, Berlin, 1991).Google Scholar
15.Leapman, R.D., Grunes, L.A., and Fejes, P.L., Phys. Rev. B 26, 614 (1972).CrossRefGoogle Scholar
16.Wu, Z. Y., Gota, S., Joliet, F., Pollak, M., Gautier-Soyer, M., and Natoli, C.R., Phys. Rev. B 55, 2570 (1997).CrossRefGoogle Scholar
17.McBreen, J., O'Grady, W. E., Tourillon, G., Dartyge, E., and Fontaine, A., J. Electroanal. Chem. 307, 229 (1991).CrossRefGoogle Scholar
18.Abbate, M., de Groot, F. M. F., Fuggle, J. C., Fujimori, A., Tokura, Y., Fujishima, Y., Strebel, O., Domke, M., Kaindl, G., van Elp, J., Thole, B. T., Sawatzky, G. A., Sacchi, M., and Tsuda, N., Phys. Rev. B 44, 5419 (1991).CrossRefGoogle Scholar
19.de Groot, F. M. F., Fuggle, J. C., Thole, B. T., and Sawatzky, G.A., Phys. Rev. B 42, 5459 (1990).CrossRefGoogle Scholar
20.de Groot, F. M. F., Hu, Z. W., López, M. F., Kaindl, G., Guillot, F., and Tronc, M., J. Chem. Phys. 101, 6570 (1994).CrossRefGoogle Scholar
21.Soriano, L., Abbate, M., de Groot, F. M. F., Alders, D., Fuggle, J.C., Hofmann, S., Petersen, H., and Braun, W., Surf. Interface Anal. 20, 21 (1993).CrossRefGoogle Scholar
22.Weijs, P. J., Wiech, G., Zahorowski, W., Speier, W., Goedkoop, J.B., Czyzyk, M., van Acker, J. F., vanLeuken, E., de Groot, R.A., van der Laan, G., Sarma, D. D., Kumar, L., Buschow, K. H. J., and Fuggle, J. C., Phys. Scripta 41, 629 (1990).CrossRefGoogle Scholar
23.de Groot, F. M. F., Grioni, M., Fuggle, J. C., Ghijsen, J., Sawatzky, G. A., and Petersen, H., Phys. Rev. B 40, 5715 (1989).CrossRefGoogle Scholar