Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T05:41:57.659Z Has data issue: false hasContentIssue false

Sintering-viscosity relation for mixed-alkali glass powder compacts

Published online by Cambridge University Press:  03 March 2011

Ki-Dong Kim*
Affiliation:
Rheinisch-Westfälische Technische Hochschule (RWTH), Institut für Gesteinshüttenkunde, Mauerstr. 5, D-52064 Aachen. Germany
*
a)Present address: Samsung-Corning Co., R&D Center, 445-970 Suwon, Korea.
Get access

Abstract

The sintering of glass powder compacts was studied by dilatometer in the (25 - x) Na2O–xK2O–75SiO2 glass system. The dilatometrically determined sintering temperature (Tsin) at constant heating rate decreases and the shrinkage at isothermal sintering increases when Na2O is replaced by K2O up to the mole fraction of K2O/(Na2O + K2O) = 0.5. This is due to the decrease in viscosity and means that sintering can be possibly accelereted by introduction of mixed alkali oxides in this system. According to calculation using the VFT-equation, the viscosity value at Tsin is almost independent of glass composition. From these results it may be supposed that the dilatometrically determined sintering begin temperature (Tsin) can be a characteristic point for the sintering of glass.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rabinovich, E. M., J. Mater. Sci. 20, 42594297 (1985).Google Scholar
2Gahlert, S. and Ondracek, G., in Sintered Glass: Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R. C. (North-Holland Press, Amsterdam, 1988), p. 161.Google Scholar
3Semar, W., Pannhorst, W., Hare, T. M., and Palmour, H. III, Glastech. Ber. 62, 7478 (1989).Google Scholar
4Siebers, F. B., Greulich, N., and Kiefer, W., Glastech. Ber. 62, 6373 (1989).Google Scholar
5Frenkel, J., J. Phys. (USSR) 9, 385391 (1945).Google Scholar
6Scherer, G. W., J. Am. Ceram. Soc. 60, 236239 (1977).Google Scholar
7Clasen, R., Ondracek, G., Pommer, P., and Smith, D.M., Silikattechnik 41, 202206 (1990).Google Scholar
8Boccaccini, A. R. and Ondracek, G., Glastech. Ber. 65, 7378 (1992).Google Scholar
9Rahaman, M. N. and De Jonghe, L. C., J. Am. Ceram. Soc. 73, 707712 (1990).CrossRefGoogle Scholar
10Kim, K. D. and Ondracek, G., Materialwissenschaft and Werkstofftechnik 24, 404408 (1993).Google Scholar
11Kim, K. D. and Ondracek, G., J. Mater. Sci. Lett. 13, 8990 (1994).Google Scholar
12Kim, K. D. and Ondracek, G., J. Mater. Sci. Lett. 14, 455456 (1995).Google Scholar
13Poole, J. P., J. Am. Ceram. Soc. 32, 230233 (1949).Google Scholar
14Shelby, J. E., J. Appl. Phys. 47, 44894496 (1976).CrossRefGoogle Scholar
15Kim, K. D., Ph.D. Thesis Rheinisch-Westfalische Technische Hochschule, Aachen, Germany (1993).Google Scholar
16Day, D. E., J. Non-Cryst. Solids 21, 343372 (1976).CrossRefGoogle Scholar
17Kawamoto, Y. and Tomozawa, M., J. Am. Ceram. Soc. 64, 289292 (1981).Google Scholar
18Sakka, S. and Mackenzie, J. D., J. Non-Cryst. Solids 6, 145162 (1971).Google Scholar
19Levin, E. M., Robbins, C. R., and McMurdie, H. F., Phase Diagrams for Ceramists (The American Ceramic Society, Westerville, OH, 1985), Vol. 1, 5th printing, p. 146.Google Scholar