Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T05:52:35.382Z Has data issue: false hasContentIssue false

Sintering mechanisms of attrition milled titanium nano powder

Published online by Cambridge University Press:  01 April 2005

B.B. Panigrahi*
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, 721302 India
M.M. Godkhindi
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, 721302 India
K. Das
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, 721302 India
P.G. Mukunda
Affiliation:
Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, 721302 India
V.V. Dabhade
Affiliation:
Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Bombay, 400076 India
P. Ramakrishnan
Affiliation:
Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Bombay, 400076 India
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Detailed sintering studies have been carried out on attrition milled nanocrystalline titanium powder through isothermal dilatometry over a temperature range of 300–1250 °C along with microstructural and x-ray diffraction studies. The sintering behavior of attrition milled nanocrystalline titanium appears to be characterized by: (i) very low activation energies, (ii) high shrinkage anisotropy, (iii) very rapid grain growth in the beta range, and (iv) two kinds of densification processes, namely, intra-agglomerate and inter-agglomerate. Analysis of the kinetic data through sintering diagram approach indicates the operation of particle sliding and grain boundary rotation, type of mechanism in addition to the grain-boundary diffusion, and lattice diffusion as the dominant mass transport mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearson, W.B.: Handbook of Lattice Spacing and Structures of Metals and Alloys (Pergamon Press, London, U.K., 1958).CrossRefGoogle Scholar
2. Naik, M.C. and Agarwala, R.P.: Anomalous diffusion in beta zirconium, beta titanium and vanadium. J. Phys. Chem. Solids 30, 2330 (1969).CrossRefGoogle Scholar
3. Mishin, Y. and Herzig, Chr.: Diffusion in the Ti–Al system. Acta Mater. 48, 589 (2000).CrossRefGoogle Scholar
4. Akechi, K. and Hara, Z.: Increase of sintering rate of titanium powder during cyclic phase transformation. Powder Metall. 24, 41 (1981).CrossRefGoogle Scholar
5. Sundaresan, R., Raghuram, A.C., Mallya, R.M. and Vasu, K.I.: Sintering of β titanium: Role of dislocation pipe diffusion. Powder Metall. 39, 138 (1996).CrossRefGoogle Scholar
6. Schuh, C., Noel, P. and Dunand, D.C.: Enhanced densification of metal powders by transformation-mismatch plasticity. Acta Mater. 48, 1639 (2000).CrossRefGoogle Scholar
7. Ragulya, V. and Skorokhod, V.V.: Rate-controlled sintering of ultrafine nickel powder. Nanostruct. Mater. 5, 835 (1995).CrossRefGoogle Scholar
8. Mayo, M.J., Chen, D.L. and Hague, D.C.: in Nanomaterials: Synthesis, Properties and Applications, edited by Edelstein, A.S. and Cammarata, R.C. (Institute of Physics Publishing, Bristol, U.K., 1996), p. 165.Google Scholar
9. Groza, J.R. and Dowding, R.J.: Nanoparticulate material densification. Nanostruct. Mater. 7, 749 (1996).CrossRefGoogle Scholar
10. Mayo, M.J.: Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev. 41, 85 (1996).CrossRefGoogle Scholar
11. Suryanarayana, C.: Nanocrystalline materials. Int. Mater. Rev. 40, 41 (1995).CrossRefGoogle Scholar
12. Li, G. and Sun, X.: Synthesis and sintering behaviour of a nanocrystalline α-alumina powder. Acta Mater. 48, 3103 (2000).CrossRefGoogle Scholar
13. Theunissen, G.S.A.M., Winnubst, A.J.A. and Burggraaf, A.J.: Sintering kinetics and microstructure development of nanoscale Y-TZP ceramics. J. Eur. Ceram. Soc. 11, 315 (1993).CrossRefGoogle Scholar
14. Andrievski, R.A.: Compaction and sintering of ultrafine powders. Int. J. Powder Metall. 30, 59 (1994).Google Scholar
15. Moldovan, D., Wolf, S., Phillpot, R. and Haslam, A.J.: Role of grain rotation during grain growth in a columnar microstructure by mesoscale simulation. Acta Mater. 50, 3397 (2002).CrossRefGoogle Scholar
16. Zhu, H. and Averback, R.S.: Sintering of nano-particle powders: Simulations and experiments. Mater. Manuf. Process. 11, 905 (1996).CrossRefGoogle Scholar
17. Zeng, P., Zajac, S., Clap, P.C. and Rifkin, J.A.: Nanoparticle sintering simulations. Mater. Sci. Eng. A 252, 301 (1998).CrossRefGoogle Scholar
18. De Keijser, Th.H., Langford, J.I., Mittemeijer, E.J. and Vogles, A.B.P.: Use of the voigt function in a single line method for the analysis of x-ray diffraction line broadening. J. Appl. Crystallogr. 15, 308 (1982).CrossRefGoogle Scholar
19. Buch, A.: Pure Metals Properties: A Scientific Technical Handbook (ASM International, Materials Park, OH, and Freund Publishing Home Ltd., London, U.K., 1999), p. 15.Google Scholar
20. Pathak, L.C., Mishra, S.K., Mukunda, P.G., Godkhindi, M.M., Bhattacharya, D. and Chopra, K.L.: Sintering studies on submicrometer-sized Y–Ba–Cu-oxide powder. J. Mater. Sci. 29, 5455 (1994).CrossRefGoogle Scholar
21. German, M.: Sintering Theory and Practice (John Wiley and Sons, New York, 1996).Google Scholar
22. Ashby, M.F.: A first report on sintering diagrams. Acta Mater. 22, 275 (1974).CrossRefGoogle Scholar
23. Okamoto, H.: Phase Diagram of Dilute Binary Alloys (ASM International, Materials Park, OH, 2002).Google Scholar
24. Massalski, B., Okamoto, H., Subramanian, P.R. and Kacprzak, L.: Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Materials Park, OH 1990).Google Scholar
25. Panigrahi, B.B.: Studies on sintering kinetics of nanocrystalline titanium powder. Ph.D. Thesis, Indian Institute of Technology (Kharagpur, India, 2004).Google Scholar
26. Herzig, C., Willecke, R. and Vieregge, K.: Self-diffusion and fast cobalt impurity diffusion in the bulk and in grain boundaries of hexagonal titanium. Philos. Mag. A 63, 949 (1991).CrossRefGoogle Scholar
27. Koppers, M., Herzig, C., Friesel, M. and Mishin, Y.: Intrinsic self-diffusion and substitutional Al diffusion in α–Ti. Acta Mater. 45, 4181 (1997).CrossRefGoogle Scholar
28. Smithells Metals Reference Book, edited by Brandes, E.A. and Brook, G.B. (Butterworth Heinemann, Oxford, U.K., 1998), p. 13.Google Scholar
29. Herzig, C., Wilger, T., Przeorski, T., Hisker, F. and Divinski, S.: Titanium tracer diffusion in grain boundaries of α–Ti, α2–Ti3Al, γ–TiAl and in α2/γ interphase boundaries. Intermetallics 9, 431 (2001).CrossRefGoogle Scholar
30. Pontau, E. and Lazarus, D.: Diffusion of titanium and niobium in bcc Ti–Nb alloys. Phys. Rev. B 19, 4027 (1973).CrossRefGoogle Scholar
31. Neumann, G., Tolle, V. and Tuijn, C.: On the impurity diffusion in β–Ti. Physica B 296, 334 (2001).CrossRefGoogle Scholar
32. Nakajima, H., Yusa, K. and Kondo, Y.: Diffusion of iron in a diluted αTi–Fe alloy. Scripta Mater. 34, 249 (1996).CrossRefGoogle Scholar
33. Nakajima, H. and Koiwa, M.: in Titanium Science and Technology, Proc. of Fifth Int. Conf. on Titanium-1984, Vol. 1, edited by Lutjering, G., Zwicker, U., and Bunk, W. (Deutsche Gesellschaft Fur Metallkunde E.V., Oberursal, Germany, 1985), p. 1759.Google Scholar
34. Nakajima, H., Oshida, S., Nonaka, K. and Yoshida, Y.: Diffusion of iron in βTi–Fe alloys. Scripta Mater. 34, 949 (1996).CrossRefGoogle Scholar