Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T11:20:51.404Z Has data issue: false hasContentIssue false

Single-walled carbon nanotube-supported platinum nanoparticles as fuel cell electrocatalysts

Published online by Cambridge University Press:  03 March 2011

Esperanza Lafuente
Affiliation:
Instituto de Carboquímica [Consejo Superior de Investigaciones Cientificas (CSIC)], 50018 Zaragoza, Spain
Edgar Muñoz
Affiliation:
Instituto de Carboquímica [Consejo Superior de Investigaciones Cientificas (CSIC)], 50018 Zaragoza, Spain
Ana M. Benito
Affiliation:
Instituto de Carboquímica [Consejo Superior de Investigaciones Cientificas (CSIC)], 50018 Zaragoza, Spain
Wolfgang K. Maser
Affiliation:
Instituto de Carboquímica [Consejo Superior de Investigaciones Cientificas (CSIC)], 50018 Zaragoza, Spain
M. Teresa Martínez*
Affiliation:
Instituto de Carboquímica [Consejo Superior de Investigaciones Cientificas (CSIC)], 50018 Zaragoza, Spain
Francisco Alcaide
Affiliation:
CIDETEC, Centre for Electrochemical Technologies, Parque Tecnológico de San Sebastián, 20009 Donostia-San Sebastián, Spain
Larraitz Ganborena
Affiliation:
CIDETEC, Centre for Electrochemical Technologies, Parque Tecnológico de San Sebastián, 20009 Donostia-San Sebastián, Spain
Ione Cendoya
Affiliation:
CIDETEC, Centre for Electrochemical Technologies, Parque Tecnológico de San Sebastián, 20009 Donostia-San Sebastián, Spain
Oscar Miguel
Affiliation:
CIDETEC, Centre for Electrochemical Technologies, Parque Tecnológico de San Sebastián, 20009 Donostia-San Sebastián, Spain
Javier Rodríguez
Affiliation:
CIDETEC, Centre for Electrochemical Technologies, Parque Tecnológico de San Sebastián, 20009 Donostia-San Sebastián, Spain
Esteban P. Urriolabeitia
Affiliation:
Departamento de Química Inorgánica, ICMA (Universidad de Zaragoza-CSIC), 50009 Zaragoza, Spain
Rafael Navarro
Affiliation:
Departamento de Química Inorgánica, ICMA (Universidad de Zaragoza-CSIC), 50009 Zaragoza, Spain
*
a) Address all correspondence to this author. e-mail: mtmartinez@carbon.icb.csic.es
Get access

Abstract

Single-walled carbon nanotubes (SWNTs) have been used as electrocatalyst support for fuel cells. A toluene solution of a platinum salt, bis(dibenzylideneacetone) platinum, has been used for the first time to decorate the outer surface of SWNT bundles with Pt nanoparticles. The obtained Pt/SWNT materials were then used as catalytic layer in electrodes for fuel cell electrocatalysis. The used platinum salt concentration in the initial SWNT dispersion determined the Pt nanoparticle size and, consequently, the activity of the Pt/SWNT electrodes toward the oxygen reduction reaction. The achieved results were compared with those corresponding to a commercial Pt/carbon black catalyst with similar Pt loading and surface area.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ansón, A., Jagiello, J., Parra, J.B., Sanjuán, M.L., Benito, A.M., Maser, W.K., Martínez, M.T.: Porosity, surface area, surface energy, and hydrogen adsorption in nanostructured carbons. J. Phys. Chem. B 108, 15820 (2004).CrossRefGoogle Scholar
2.Huang, W., Yang, C., Zhang, S.: Simultaneous determination of 2-nitrophenol and 4-nitrophenol based on the multi-wall carbon nanotubes Nafion-modified electrode. Anal. Bioanal. Chem. 375, 703 (2003).CrossRefGoogle ScholarPubMed
3.Chan, K-Y., Ding, J., Ren, J., Cheng, S., Tsang, K.Y.: Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J. Mater. Chem. 14, 505 (2004).CrossRefGoogle Scholar
4.Ye, X.R., Lin, Y., Wai, C.M.: Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chem. Commun. 5, 642 (2003).CrossRefGoogle Scholar
5.Armadi, T.S., Wang, Z.L., Green, T.C., Henglein, A., El-Sayed, M.A.: Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924 (1996).Google Scholar
6.Boutonnet, M., Kizling, J., Stenius, P.: The preparation of monodispersed colloidal metal particles from microemulsions. Colloids Surf. 5, 209 (1982).CrossRefGoogle Scholar
7.López-Quintela, M. Arturo, Rivas, J.: Chemical reactions in microemulsions: A powerful method to obtain ultrafine particles. J. Colloid Interface Sci. 158, 446 (1993).CrossRefGoogle Scholar
8.Okitsu, K., Yue, A., Tanabe, S., Matsumoto, H.: Sonochemical preparation and catalytic behavior of highly dispersed palladium nanoparticles on alumina. Chem. Mater. 12, 3006 (2000).CrossRefGoogle Scholar
9.Fujimoto, T., Teraushi, S., Umehara, H., Kojima, I., Henderson, W.: Sonochemical preparation of single-dispersion metal nanoparticles from metal salts. Chem. Mater. 13, 1057 (2001).CrossRefGoogle Scholar
10.Tu, W.X., Liu, H.Y.: Continuous synthesis of colloidal metal nanoclusters by microwave irradiation. Chem. Mater. 12, 564 (2000).CrossRefGoogle Scholar
11.Komarneni, S., Li, D.S., Newalkar, B., Katsuki, H., Bhalla, A.S.: Microwave-polyol process for Pt and Ag nanoparticles. Langmuir 18, 5959 (2002).CrossRefGoogle Scholar
12.Thompsett, D. Catalysts for the proton exchange membrane fuel cell, in Fuel Cell Technology Handbook, edited by Hoogers, G. (CRC Press, New York, 2003).Google Scholar
13.Petrow, H.G. and Allen, R.J.: Catalytic platinum metal particles on a substrate and method of preparing the catalysts. U.S. Patent No. 3992331 (1976).Google Scholar
14.Prabhuram, J., Wang, X., Hui, C.L., Hsing, I.M.: Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel-cell applications. J. Phys. Chem. B 107, 11057 (2003).CrossRefGoogle Scholar
15.Ajayan, P.M., Iijima, S.: Capillarity-induced filling of carbon nanotubes. Nature 361, 333 (1993).CrossRefGoogle Scholar
16.Hsin, Y.L., Hwang, K.C., Chen, F.R., Kai, J-J.: Production an in situ metal filling of carbon nanotubes in water. Adv. Mater. 13, 830 (2001).3.0.CO;2-4>CrossRefGoogle Scholar
17.Che, G.L., Lakshmi, B.B., Martín, C.R., Fisher, E.R.: Metal nanocluster-filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 15, 750 (1999).CrossRefGoogle Scholar
18.Liu, Z.L., Lin, X.H., Lee, J.Y., Zhang, W., Han, M., Gan, L.M.: Preparation and characterization of platinum-based electrocatalysts of multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir 18, 4054 (2002).CrossRefGoogle Scholar
19.Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes: The route towards applications. Science 297, 787 (2002).CrossRefGoogle Scholar
20.Ajayan, P.M.: Nanotubes from carbon. Chem. Rev. 99, 1787 (1999).CrossRefGoogle ScholarPubMed
21.Bernard, C., Planeix, J.M., Valérie, B.: Fullerene-based materials as new support media in heterogeneous catalysis by metals. Appl. Catal., A 173, 175 (1998).Google Scholar
22.Xue, B., Chen, P., Hong, Q., Lin, J., Tan, K.L.: Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J. Mater. Chem. 11, 2378 (2001).CrossRefGoogle Scholar
23.Chen, P., Wu, X., Lin, J., Tan, K.L.: Synthesis of Cu nanoparticles and microsized fibers by using carbon nanotubes as a template. J. Phys. Chem. B 103, 4559 (1999).CrossRefGoogle Scholar
24.Planeix, J.M., Coustel, N., Coq, B., Brotons, V., Kumbhar, P.S., Dutartre, R., Geneste, P., Bernier, P., Ajayan, P.M.: Applications of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 116, 7935 (1994).CrossRefGoogle Scholar
25.Yu, R., Chen, L., Liu, Q., Lin, J., Tan, K.L., Ng, S.C., Chan, H.S.O., Xu, G.Q., Hor, T.S.A.: Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater. 10, 718 (1998).CrossRefGoogle Scholar
26.Lordi, V., Yao, N., Wei, J.: Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. 13, 733 (2001).CrossRefGoogle Scholar
27.Ebbesen, T.W., Hiura, H., Bisher, M.E., Treacy, M.M.J., Shreeve-Keyer, J.L., Haushalter, R.C.: Decoration of carbon nanotubes. Adv. Mater. 8, 155 (1996).CrossRefGoogle Scholar
28.Ang, L.M., Hor, T.S.A., Xu, G.Q., Tung, C.H., Zhao, S.P., Wang, J.L.S.: Electroless plating of metals onto carbon nanotubes activated by a single-step activation method. Chem. Mater. 11, 2115 (1999).CrossRefGoogle Scholar
29.EG&G Services Parsons Inc.: Science Applications International Corporation: Fuel Cell Handbook, 5th ed. (U.S. Department of Energy, Morgantown, WV, 2002), p. 3.Google Scholar
30.Li, W., Liang, C., Qiu, J., Zhou, W., Han, H., Wei, Z., Sun, G., Xin, Q.: Carbon nanotubes as support for cathode catalyst a direct methanol fuel cell. Carbon 40, 791 (2002).CrossRefGoogle Scholar
31.Li, W., Liang, C., Zhou, W., Qiu, J., Zhou, Z., Sun, G., Xin, Q.: Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J. Phys. Chem. B 107, 6292 (2003).CrossRefGoogle Scholar
32.Román-Martínez, M.C., Cazorla-Amorós, D., Linares-Solano, A., de Lecea, C. Salinas-Martínez, Yamashita, H., Anpo, M.: Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor. Carbon 33, 3 (1995).CrossRefGoogle Scholar
33.Lordi, V., Yao, N., Wei, J.: Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. 13, 733 (2001).CrossRefGoogle Scholar
34.Guo, D-J., Lin, H-L.: High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles. J. Electroanal. Chem. 573, 197 (2004).Google Scholar
35.Wu, G., Chen, Y-S., Xu, B-Q.: Remarkable support effect of SWNTs in Pt catalysis for methanol electrooxidation. Electrochem. Commun. 7, 1237 (2005).CrossRefGoogle Scholar
36.Liu, Z., Gan, L.M., Hong, L., Chen, W., Lee, J.Y.: Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. J. Power Sources 139, 73 (2005).CrossRefGoogle Scholar
37.Joo, S.H., Choi, S.J., Oh, I., Kwak, J., Liu, Z., Terasaki, O., Ryoo, R.: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169 (2001).CrossRefGoogle ScholarPubMed
38.Journet, C., Maser, W.K., Bernier, P., de Chapelle, A. Lamy la, Lefrant, S., Deniard, P., Lee, R., Fisher, J.E.: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756 (1997).CrossRefGoogle Scholar
39.Picó, F., Rojo, J.M., Sanjuán, M.L., Ansón, A., Benito, A.M., Callejas, M.A., Maser, W.K., Martínez, M.T.: Single-walled carbon nanotubes as electrodes in supercapacitors. J. Electrochem. Soc. 151 A831(2004).CrossRefGoogle Scholar
40.Moseley, K., Maitlis, P.M.: Acetylenes and noble metal compounds. Part XI. Reactions of di-methyl acetylenedicarboxylate with dibenzylideneaceton-palladium and -platinum complexes: Pallada- and platina-cyclopetadienes. J. Chem. Soc., Dalton Trans. 2, 169 (1974).CrossRefGoogle Scholar
41.Litster, S., McLean, G.: PEM fuel electrodes. J. Power Sources 130, 61 (2004).CrossRefGoogle Scholar
42.Woods, R.: Hydrogen adsorption on platinum, iridium and rhodium electrodes at reduced temperatures and the determination of real surface area. J. Electroanal. Chem. 49, 217 (1974).CrossRefGoogle Scholar
43.Souza, M.M.V.M., Aranda, D.A.G., Perez, C.A.C., Schmal, M.: Surface characterization of zirconia-coated alumina as support for Pt particles. Phys. Status Solidi A 187, 297 (2001).3.0.CO;2-U>CrossRefGoogle Scholar
44.Mista, W., Zawadzki, M., Wrzyszcz, J., Grabowska, H., Trawczynski, J.: Thermal stability of platinum supported zinc aluminate combustion catalysts. Pol. J. Chem. 75, 1561 (2001).Google Scholar
45.Zawadzki, M., Mista, W., Kepinski, L.: Metal-support effects of platinum supported on zinc aluminate. Vacuum 63, 291 (2001).CrossRefGoogle Scholar
46.Warren, B.E.: X-Ray Diffraction. (Addison-Wesley, Reading, MA, 1996).Google Scholar
47.Terrones, M., Hsu, W.K., Schilder, A., Terrones, H., Grobert, N., Hare, J.P.: Novel nanotubes and encapsulated nanowires. Appl. Phys. A 66, 307 (1998).CrossRefGoogle Scholar
48.Gattrell, M., MacDougall, B. The oxygen reduction/evolution reaction, in Handbook of Fuel Cell Technology, Vol. 2, Part 5, edited by Vielstich, W., Lamm, A., and Gasteiger, H.A., (John Wiley & Sons Ltd., Chichester, UK, 2003).Google Scholar
49.Lin, Y.H., Cui, X.L., Yen, C., Wai, C.M.: Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. J. Phys. Chem. B 109, 14410 (2005).CrossRefGoogle ScholarPubMed
50.Huang, J.E., Guo, D.J., Yao, Y.G., Li, H.L.: High dispersion and electrocatalytic properties of platinum nanoparticles on surface-oxidized single-walled carbon nanotubes. J. Electroanal. Chem. 577, 93 (2005).CrossRefGoogle Scholar
51.Guo, J.W., Zhao, T.S., Prabhuram, J., Wong, C.W.: Preparation and the physical/electrochemical properties of a Pt/C nanocatalyst stabilized by citric acid for polymer electrolyte fuel cells. Electrochim. Acta 50, 1973 (2005).CrossRefGoogle Scholar
52.Rajalakshmi, N., Ryu, H., Shaijumon, M.M., Ramaprabhu, S.: Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material. J. Power Sources 140, 250 (2005).CrossRefGoogle Scholar
53.Kinoshita, K.: Carbon: Electrochemical and Physicochemical Properties (John Wiley, New York, 1976), p 299.Google Scholar
54.Christensen, P.A., Hammet, A.: Techniques and Mechanism in Electrochemistry. (Chapman & Hall, London, 1994), p 228.Google Scholar
55.Wang, X., Kumar, R., Myers, D.J.: Effect of voltage on platinum dissolution. Relevance to polymer electrolyte fuel cells. Electrochem. Solid State Lett. 9 A225(2006).CrossRefGoogle Scholar
56.Maillard, F., Eikerling, M., Cherstiouk, O.V., Schreier, S., Savinova, E., Stimming, U.: Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: The role of surface mobility. Faraday Discuss. 125, 357 (2004).CrossRefGoogle ScholarPubMed
57.Raghuveer, V., Manthiram, A.: Mesoporous carbons with controlled porosity as an electrocatalytic support for methanol oxidation. J. Electrochem. Soc. 152 A1504(2005).CrossRefGoogle Scholar
58.Prabhuram, J., Zhao, T.S., Tang, Z.K., Chen, R., Liang, Z.X.: Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. J. Phys. Chem. B 110, 5245 (2006).CrossRefGoogle ScholarPubMed