Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T00:32:16.156Z Has data issue: false hasContentIssue false

Single-walled carbon nanotubes synthesized by the pyrolysis of pyridine over catalysts

Published online by Cambridge University Press:  03 March 2011

J. Liu
Affiliation:
The Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109
D.L. Carroll*
Affiliation:
The Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109
J. Cech
Affiliation:
Max-Planck-Institute for Solid State Research, 70569 Stuttgart, Germany
S. Roth
Affiliation:
Max-Planck-Institute for Solid State Research, 70569 Stuttgart, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Single-walled carbon nanotubes (SWNTs) were successfully synthesized by pyrolysis of pyridine over MgO supported Fe–Mo or Co–Mo catalysts in the presence of pure H2 or a mixture of H2 and NH3 atmospheres. The average diameters of SWNTs are ∼1.5 and ∼3 nm for pure H2 and the H2 and HN3 mixture, respectively. Scanning tunneling spectroscopy (STS) studies show that the SWNTs grown in both atmospheres are doped with nitrogen substituted into the lattice in a pyridine-type structure. This results in a donor feature in the local density of states with an energy that depends on the nitrogen doping concentration.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993).CrossRefGoogle Scholar
2.Bethune, D.S., Kiang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605 (1993).CrossRefGoogle Scholar
3.Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes (Imperial College Press, London, UK, 1998).CrossRefGoogle Scholar
4.Ajayan, P.M.: Nanotubes from carbon. Chem. Rev. 99, 1787 (1999).CrossRefGoogle ScholarPubMed
5.Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., Kim, J.M.: Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129 (1999).CrossRefGoogle Scholar
6.Bachtold, A., Hadley, P., Nakanishi, T., Dekker, C.: Logic circuits with carbon nanotube transistors. Science 294, 1317 (2001).CrossRefGoogle ScholarPubMed
7.Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H.: Nanotube molecular wires as chemical sensors. Science 287, 622 (2000).CrossRefGoogle ScholarPubMed
8.An, K.H., Kim, W.S., Park, Y.S., Choi, Y.C., Lee, S.M., Chung, D.C., Bae, D.J., Lim, S.C., Lee, Y.H.: Supercapacitors using single-walled carbon nanotube electrodes. Adv. Mater. 13, 497 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
9.Journet, C., Maser, W.K., Bernier, P., Loiseau, A., de Chapelle, M. Lamy la, Lefrant, S., Deniard, P., Lee, R., Fisher, J.E.: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756 (1997).CrossRefGoogle Scholar
10.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., Smalley, R.E.: Crystalline ropes of metallic carbon nanotubes. Science 273, 483 (1996).CrossRefGoogle ScholarPubMed
11.Dai, H., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E.: Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 260, 471 (1996).CrossRefGoogle Scholar
12.Kong, J., Cassell, A.M., Dai, H.: Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 292, 567 (1998).CrossRefGoogle Scholar
13.Hafner, J.H., Bronikowski, M.J., Azamian, B.R., Nikolaev, P., Rinzler, A.G., Colbert, D.T., Smith, K.A., Smalley, R.E.: Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 296, 195 (1998).CrossRefGoogle Scholar
14.Flahaut, E., Govindaraj, A., Peigney, A., Laurent, Ch., Rousset, A., Rao, C.N.R.: Synthesis of single-walled carbon nanotubes using binary(Fe,Co,Ni) alloy nano particles prepared in situ by the reduction of oxide solid solutions. Chem. Phys. Lett. 300, 236 (1999).CrossRefGoogle Scholar
15.Su, M., Zheng, B., Liu, J.: A scalable CVD method for the synthesis of single walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett. 322, 321 (2000).CrossRefGoogle Scholar
16.Harutyunyan, A.R., Pradlhan, B.K., Kim, U.J., Chen, G., Eklund, P.C.: CVD synthesis of single wall carbon nanotubes under “soft” conditions. Nano Lett. 2, 525 (2002).CrossRefGoogle Scholar
17.Liu, B.C., Lyu, S.C., Lee, T.J., Choi, S.K., Eum, S.J., Yang, C.W., Park, C.Y., Lee, C.J.: Synthesis of single- and double-walled carbon nanotubes by catalytic decomposition of methane. Chem. Phys. Lett. 373, 475 (2003).CrossRefGoogle Scholar
18.Flahaut, E., Peigney, A., Laurent, Ch., Rousset, A.: Synthesis of single-walled carbon nanotube-Co-MgO composite powders and extraction of the nanotubes. J. Mater. Chem. 10, 249 (2000).CrossRefGoogle Scholar
19.Nikolaev, P., Bronikowski, M.J., Bradley, R. Kelley, Rohmund, F., Colbert, D.T., Smith, K.A., Smalley, R.E.: Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91 (1999).CrossRefGoogle Scholar
20.Kitiyanan, B., Alvarez, W.E., Harwell, J.H., Resasco, D.E.: Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts. Chem. Phys. Lett. 317, 497 (2000).CrossRefGoogle Scholar
21.Zhu, H.W., Xu, C.L., Wu, D.H., Wei, B.Q., Vajtai, R., Ajayan, P.M.: Direct synthesis of long single-walled carbon nanotube strands. Science 296, 884 (2002).CrossRefGoogle ScholarPubMed
22.Colomer, J.F., Bister, G., Willems, I., Konya, Z., Fonseca, A., Van Tendeloo, G., Nagy, J.B.: Synthesis of single-walled carbon nanotubes by catalytic decomposition of hydrocarbons. Chem. Commun. 1343(1999).CrossRefGoogle Scholar
23.Satishkumar, B.C., Govindaraj, A., Sen, R., Rao, C.N.R.: Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures. Chem. Phys. Lett. 293, 47 (1998).CrossRefGoogle Scholar
24.Ci, L., Xie, S., Tang, D., Yan, X., Li, Y., Liu, Z., Zou, X., Zhou, W., Wang, G.: Controllable growth of single wall carbon nanotubes by pyrolizing acetylene on the floating iron catalysts. Chem. Phys. Lett. 349, 191 (2001).CrossRefGoogle Scholar
25.Cheng, H.M., Li, F., Su, G., Pan, H.Y., He, L.L., Sun, X., Dresselhaus, M.S.: Large-scale and low-cost synthesis of single-walled carbon nanotubes by catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett. 72, 3282 (1998).CrossRefGoogle Scholar
26.Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., Kohno, M.: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 360, 229 (2002).CrossRefGoogle Scholar
27.Lyu, S.C., Liu, B.C., Lee, T.J., Liu, Z.Y., Yang, C.W., Park, C.Y., Lee, C.J.: Synthesis of high-quality single-walled carbon nanotubes by catalytic decomposition of C2H2. Chem. Commun. 734(2003).Google Scholar
28.Cassell, A.M., Raymakers, J.A., Kong, J., Dai, H.: Large-scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103, 6484 (1999).CrossRefGoogle Scholar
29.Colomer, J.F., Stephan, C., Lefrant, S., Van Tendeloo, G., Willems, I., Konya, Z., Fonseca, A., Laurent, Ch., Nagy, J.B.: Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chem. Phys. Lett. 317, 83 (2000).CrossRefGoogle Scholar
30.Sen, R., Satishkumar, B.C., Govindaraj, S., Harikumar, K.R., Renganathan, M.K., Rao, C.N.R.: Nitrogen-containing carbon nanotubes. J. Mater. Chem. 12, 2335 (1997).CrossRefGoogle Scholar
31.Sen, R., Satishkumar, B.C., Govindaraj, A., Harikumar, K.R., Raina, G., Zhang, J-P., Cheetham, A.K., Rao, C.N.R.: B–C–N, C–N, and B–N nanotubes produced by pyrolysis of precursor molecules over Co catalysts. Chem. Phys. Lett. 287, 671 (1998).CrossRefGoogle Scholar
32.Nath, M., Satishkumar, B.C., Govindaraj, A., Vinod, C.P., Rao, C.N.R.: Production of bundles of aligned carbon and carbon nitrogen nanotubes by the pyrolysis of precursors on silica-surported iron and cobalt catalyst. Chem. Phys. Lett. 322, 333 (2000).CrossRefGoogle Scholar
33.Liu, J., Czerw, R.Webster, S., Carroll, D.L., Park, J.H., Park, Y.W. and M. Terrones, MAdvances in CNx nanotube growth, in Nanotubebased Devices, edited by Bernier, P., Carroll, D.L., Kim, G-T., and Roth, S. (Mater. Res. Soc. Symp. Proc. 772, Warrendale, PA, 2003), M2.5, p. 105.Google Scholar
34.Carroll, D.L., Redlich, Ph., Blase, X., Chalier, J-C., Curran, S., Ajayan, P.M., Roth, S., Rühle, M.: Effects of nanodomain formation on the electronic structure of doped carbon nanotubes. Phys. Rev. Lett. 81, 2332 (1998).CrossRefGoogle Scholar
35.Wang, W.L., Bai, X.D., Liu, K.H., Xu, Z., Golberg, D., Bando, Y., Wang, E.G.: Direct synthesis of B–C–N single-walled carbon nanotubes by bias-assisted hot filament chemical vapor deposition. J. Am. Chem. Soc. 128, 6530 (2006).CrossRefGoogle Scholar
36.Bacsa, R.B., Laurent, C.H., Peigney, A., Bacsa, W.S., Vaugien, Th., Rousset, A.: High specific surface area carbon nanotubes from catalytic chemical vapor deposition process. Chem. Phys. Lett. 323, 566 (2000).CrossRefGoogle Scholar
37.Tang, S., Zhong, Z., Xiong, Z., Sun, L., Liu, L., Lin, J., Shen, Z.X., Tan, K.L.: Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Chem. Phys. Lett. 350, 19 (2001).CrossRefGoogle Scholar
38.Patil, K.C.: Advanced ceramics: Combustion synthesis and properties. Bull. Mater. Sci. 16, 533 (1993).CrossRefGoogle Scholar
39.Feenstra, M.: Tunneling spectroscopy of the (110) surface of direct-gap III-V semiconductors. Phys. Rev. B 50, 4561 (1994).CrossRefGoogle ScholarPubMed
40.Yi, J-Y., Bernholc, J.: Atomic structure and doping of microtubules. Phys. Rev. B 47, 1708 (1993).CrossRefGoogle ScholarPubMed
41.Terrones, M., Redlich, P., Grobert, N., Trasobares, S., Hsu, W-K., Terrones, H., Zhu, Y-Q., Hare, J.P., Reeves, C.L., Cheetham, A.K., Rühle, M., Kroto, H.W., Walton, D.R.M.: Carbon nitride nanocomposites formation of aligned CxNy nanofibers. Adv. Mater. 11, 655 (1999).3.0.CO;2-6>CrossRefGoogle Scholar
42.Liu, J., Webster, S., Caroll, D.L.: Highly aligned helical nitrogen doped carbon nanotubes synthesized by injection assisted chemical vapor deposition. Appl. Phys. Lett. 88, 213119 (2006).CrossRefGoogle Scholar
43.Liu, J., Czerw, R., Carroll, D.L.: Large-scale synthesis of highly aligned nitrogen doped carbon nanotubes by injection chemical-vapor-deposition methods. J. Mater. Res. 20, 538 (2005).CrossRefGoogle Scholar
44.Liu, J., Webster, S., Carroll, D.L.: Temperature and flow rate of NH3 effects on nitrogen content and doping environments of carbon nanotubes grown by injection CVD method. J. Phys. Chem. B 109, 15769 (2005).CrossRefGoogle ScholarPubMed
45.Zhang, Y., Gu, H., Iijima, S.: Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl. Phys. Lett. 73, 3827 (1998).CrossRefGoogle Scholar