Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T15:11:07.507Z Has data issue: false hasContentIssue false

Single-step fabrication of potassium tantalate films by hydrothermal-electrochemical method at lower temperatures

Published online by Cambridge University Press:  31 January 2011

Zhibin Wu
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 228-8503, Japan
Tetsuji Tsukada
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 228-8503, Japan
Masahiro Yoshimura
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 228-8503, Japan
Get access

Abstract

Potassium tantalate thin films (KT) were hydrothermal-electrochemically and electrochemically synthesized on tantalum substrates under galvanostatic conditions in KOH solutions at temperatures from 50 to 150 °C. The pyrochlore structures were characterized by x-ray diffraction and scanning electron microscopy for the films formed under a variety of conditions. It was found that the reaction temperature, potassium hydroxide concentration, and current density significantly affect the formation and the morphology of the KT films. When the reaction temperatures were higher than 80 °C and the KOH concentrations were greater than 2.0 M, very crystalline films with excellent film flatness and good adherence on the substrate were obtained. Based on the experimental results, it was confirmed that the formation and growth of KT films by the hydrothermal-electrochemical and electrochemical method follow a dissolution-crystallization mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yoshimura, M., Suchanek, W., and Han, K.S., J. Mater. Chem. 9, 77 (1999).CrossRefGoogle Scholar
2.Yoshimura, M., Han, K.S., and Suchanek, W., Bull. Mater. Sci. 22, 101 (1999).Google Scholar
3.Yoshimura, M., J. Mater. Res. 13, 796 (1998).CrossRefGoogle Scholar
4.Yoshimura, M. and Suchanek, W., Solid State Ionics 98, 197 (1997).CrossRefGoogle Scholar
5.Cho, W.S. and Yoshimura, M., Jpn. J. Appl. Phys. 36, 1216 (1997).Google Scholar
6.Cho, W.S., Yashima, M., Kakihana, M., Kudo, A., Sakata, T., and Yoshimura, M., J. Am. Ceram. Soc. 80, 765 (1997).CrossRefGoogle Scholar
7.Cho, W.S., Yashima, M., Kakihana, M., Kudo, A., Sakata, T., and Yoshimura, M., Appl. Phys. Lett. 68, 137 (1996).Google Scholar
8.Yoshimura, M., Suchanek, W., Watanabe, T., and Sakurai, B., J. Mater. Res. 13, 875 (1998).CrossRefGoogle Scholar
9.Suchanek, W. and Yoshimura, M., J. Am. Ceram. Soc. 81, 2864 (1998).CrossRefGoogle Scholar
10.Suchanek, W., Watanabe, T., and Yoshimura, M., Solid State Ionics 109, 65 (1998).CrossRefGoogle Scholar
11.Kitamura, M. and Chen, H., Ferroelectrics 206–207, 55 (1998).CrossRefGoogle Scholar
12.Vikhnin, V.S., Ferroelectrics 199, 25 (1997).Google Scholar
13.Singh, D.J., Ferroelectrics 194, 299 (1997).Google Scholar
14.Vogt, H., Ferroelectrics 202, 157 (1997).CrossRefGoogle Scholar
15.Auf Der Horst, C., Magnien, S., and Kapphan, S., Ferroelectrics 185, 265 (1996).Google Scholar
16.Havranek, A. and Marvan, M., Ferroelectrics 176, 25 (1996).Google Scholar
17.Postnikov, A.V., Neumann, T., and Borstel, G., Ferroelectrics 164, 101 (1995).CrossRefGoogle Scholar
18.Salce, B., Gravil, J.L., and Boatner, L.A., J. Phys.: Condens. Matter 6, 4077 (1994).Google Scholar
19.Nishihata, Y., Kamishima, O., Maeda, H., Ishii, T., Sawada, A., and Terauchi, H., Physica B 208–209, 311 (1995).Google Scholar
20.Nishihata, Y., Kamishima, O., Ojima, K., Swada, A., Maeda, H., and Terauchi, H., J. Phys.: Condens. Mater 6, 9317 (1994).Google Scholar
21.Yamaichi, E., Ohno, S., and Ohi, K., Jpn. J. Appl. Phys. 27, 583 (1988).Google Scholar
22.Nakamura, K. and Imai, K., Jpn. Kokai Tokkyo Koho JP 08195328 (1996).Google Scholar
23.Fu, S.Q., Lee, W-K., Nowick, A.S., Boatner, L.A., and Abraham, M.M., J. Solid State Chem. 83, 221 (1989).Google Scholar
24.Lee, W-K., Nowick, A.S., and Boatner, L.A., Solid State Ionics 18–19, 989 (1986).Google Scholar
25.Engstrom, H., Bates, J.B., and Boatner, L.A., J. Chem. Phys. 73, 1073 (1980).CrossRefGoogle Scholar
26.Christen, H-M., Boatner, L.A., Budai, J.D., Chisholm, M.F., Gea, L.A., Marrero, P.J., and Norton, D.P., Appl. Phys. Lett. 68, 1488 (1996).Google Scholar
27.Huliger, J., Gutmann, R., and Wagli, P., Thin Solid Films 175, 201 (1989).CrossRefGoogle Scholar
28.Hirano, S., Yogo, T., Kikuta, K., Morshita, T., and Ito, Y., J. Am. Ceram. Soc. 75, 1701 (1992).CrossRefGoogle Scholar
29.Lu, C.J., Kuang, A.X., Huang, G.Y., and Wang, S.M., J. Mater. Sci 31, 3081 (1996).Google Scholar
30.Chakoumakos, B., J. Solid State Chem. 53, 120 (1984).Google Scholar
31.Subramanian, M.A., Aravamudan, G., and Subba, G.V.Rao, Progr. Solid State Chem. 15, 55 (1983).Google Scholar
32.Udupa, H.V.K and Venikatesan, V.K., in Encyclopedia of Electrochemistry of the Elements, edited by Bard, A.J. (Marcel Dekker, New York, 1974), Vol. II, p. 53.Google Scholar
33.Database of XRD instrument, Model MXP 3VA, MAC Science Co., Ltd., Tokyo, Japan (PDF No. is 351464).Google Scholar
34.Vandenborre, M.T. and Husson, E., J. Solid State Chem. 50, 362 (1983).CrossRefGoogle Scholar
35.Bacsa, R.R., Rutsch, G., and Dougherty, J.P., J. Mater. Res. 11, 194 (1996).Google Scholar
36.Bacsa, R.R., Ravindranathan, P., and Dougherty, J.P., J. Mater. Res. 7, 423 (1992).Google Scholar
37.Venigalla, S., Bendale, P., Ambrose, J.R., Verink, E.D. Jr, and Adair, J.H., in Ferroelectric Thin Films II, edited by Kingon, A.I., Myers, E.R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 309.Google Scholar
38.Bendale, P., Vengala, S., Ambrose, J.R., Verink, E.D. Jr, and Adair, J.H., J. Am. Ceram. Soc. 76, 2619 (1993).CrossRefGoogle Scholar
39.Wu, Z. and Yoshimura, M., Solid State Ionics 122, 161 (1999).Google Scholar
40.Pourbaix, M., in Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed. (National Association of Corrosion Engineers, Houston, TX, 1974), p. 251.Google Scholar
41.Kajiyoshi, K. and Yoshimura, M., Eur. J. Solid State Inorg. Chem. 33, 623 (1996).Google Scholar
42.Kajiyoshi, K., Hamaji, Y., Tomono, K., Kasanami, T., and Yoshimura, M., J. Am. Ceram. Soc. 79, 613 (1996).CrossRefGoogle Scholar