Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T21:01:13.313Z Has data issue: false hasContentIssue false

Single-crystal silicon films on glass

Published online by Cambridge University Press:  31 January 2011

Kishor P. Gadkaree*
Affiliation:
Corning Inc., Sullivan Park, Corning, New York 14831
Kamal Soni
Affiliation:
Corning Inc., Sullivan Park, Corning, New York 14831
Shang-Cong Cheng
Affiliation:
Corning Inc., Sullivan Park, Corning, New York 14831
Carlo Kosik-Williams
Affiliation:
Corning Inc., Sullivan Park, Corning, New York 14831
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We present a new process based on the electrolysis of glass, which allows the transfer of a single-crystal silicon film while creating an in situ barrier layer free of mobile ions in the glass. This barrier layer consists only of network-forming elements (i.e., aluminum, silicon, and boron) and is free of modifiers. The barrier layer glass is unusual and cannot be synthesized via any of the known glass-forming processes. The barrier layer is thermally stable and thus allows the fabrication of displays with ultimate performance. The process consists of the hydrogen ion implantation of silicon to create a defect structure followed by bringing the glass and the silicon wafer in contact, and finally applying electrical potential to cause the electrolysis of glass.

Type
Rapid Commnunications
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, N.M., Biegelsen, D.K., Tuan, H.C., Moyer, M.D.Fennell, L.E.: Single-crystal silicon transistors in laser-crystallized thin films on bulk glass. Electron. Device Lett. 3, 369 1982CrossRefGoogle Scholar
2Cai, M., Qiao, D., Yu, L.S., Lau, S.S., Li, C.P., Hung, L.S., Haynes, T.E., Henttinen, K., Suni, I., Poon, V.M.C., Marek, T.Mayer, J.W.: Single crystal silicon on glass by ion cutting. J. Appl. Phys. 92, 3388 2002CrossRefGoogle Scholar
3Bruel, M.: Silicon on insulator material technology. Electron. Lett. 31, 1201 1995CrossRefGoogle Scholar
4Kouvatsos, D.N., Sarcona, G.T., Tsoukalas, D., Hatalis, M.K., Goustouridis, D.Stoemenos, J.: J. Active Matrix Liquid Crystal Displays 125 1995CrossRefGoogle Scholar
5Dori, L., Bruley, J., Dimira, D.J., Batson, P.E., Tornello, J.Arienzo, M.: Thin-oxide dual-electron-injector annealing studies using conductivity and electron energy-loss spectroscopy. J. Appl. Phys. 69, 2317 1991Google Scholar
6Iltgen, K., Bendel, C., Benninghoven, A.Niehuis, E.: Optimized time-of-flight secondary ion mass spectroscopy depth profiling with a dual beam technique. J. Vac. Sci. Technol., A 15, 460 1997Google Scholar
7Manley, R.G., Fenger, G., Hirschman, K.D., Couillard, J.G., Williams, C. Kosik, Dawson-Elli, D.Cites, J.: Demonstration of high performance TFTs on silicon-on-glass (SiOG) substrate, SID 2007 Digest, Paper 197 (Society for Information Display, San Jose, CA)CrossRefGoogle Scholar
8Choi, J.B., Chang, Y-J., Shim, S-H., Chung, I-D., Park, K.W., Park, K.C., Moon, K.C., Min, H-K., Kim, C-W., Gadkaree, K.P., Couillard, J.G., Cites, J.S.Ahn, S.E.: AMOLED based on silicon-on-glass (SiOG) technology, SID Digest 2007, Paper 41-4 (Society for Information Display, San Jose, CA)CrossRefGoogle Scholar
9Klaassen, F.Hess, W.: Compensated MOSFET devices. Solid-State Electron. 28, 359 1985Google Scholar