Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T12:00:30.225Z Has data issue: false hasContentIssue false

Simultaneous Synthesis and Consolidation of Nanostructured MoSi2

Published online by Cambridge University Press:  31 January 2011

Christophe Gras
Affiliation:
LRRS, UMR 5613 CNRS, University of Burgundy, “Fine Grained Materials” Group, BP47870, F-21078 Dijon, France and UMR 5060 CNRS, “Nanomaterials: Far From Equilibrium Phase Transitions” Group, F-90010 Belfort, France
Frédéric Bernard
Affiliation:
LRRS, UMR 5613 CNRS, University of Burgundy, “Fine Grained Materials” Group, BP47870, F-21078 Dijon, France
Frédéric Charlot
Affiliation:
LRRS, UMR 5613 CNRS, University of Burgundy, “Fine Grained Materials” Group, BP47870, F-21078 Dijon, France and UMR 5060 CNRS, “Nanomaterials: Far From Equilibrium Phase Transitions” Group, F-90010 Belfort, France
Eric Gaffet
Affiliation:
UMR 5060 CNRS, “Nanomaterials: Far From Equilibrium Phase Transitions” Group, F-90010 Belfort, France
Zuhair A. Munir
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Get access

Abstract

A new process combining electric field activation and the imposition of pressure from mechanically activated powder mixtures is demonstrated as a means to simultaneously synthesize and densify nano-MoSi2 in one step. Nanophase reactants (Mo + 2Si) produced by mechanical activation are reacted by field activation with the simultaneous application of a uniaxial pressure. Mo + 2Si powders were comilled in a specially designed planetary mill to obtain nanometric reactants but to avoid formation of any product phases. These were then subjected to high alternating currents (1600 A) and pressures of 106 MPa. Under these conditions, a reaction is initiated and completed within a short period of time (3–6 min). The relative density of the product ranged from 82 to 93%. The crystallite size of the MoSi2 compound was determined by x-ray diffraction line-broadening analysis using the Langford method. The size ranged from 58 to 75 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kham, T., Saka, S., Veyssière, P., and Costa, P., Intermetallics for structural applications, High Temperature Materials for Power Engineering, Liège, France, Sept. 24–27, 1990 (1990).Google Scholar
Maloney, M.J. and Shah, D., Advanced Intermetallics—Silicide, Physical Metallurgy and Processing of Intermetallic Compounds, edited by Stoloff, N.S. and Sikka, V.K. (Chapman and Hall, London, United Kingdom, 1996) p. 441.CrossRefGoogle Scholar
Jeng, Y.J. and Lavernia, B.J., J. Mater. Sci. 29, 2557 (1994).CrossRefGoogle Scholar
Stoloff, N.S., Mater. Sci. Eng. A A261, 169 (1999).CrossRefGoogle Scholar
Subrahmanyam, J., J. Am. Ceram. Soc. 76(1), 226 (1993).Google Scholar
Wirkus, C.D. and Wilder, D.R., J. Am. Ceram. Soc. 49 (4), 173 (1966).CrossRefGoogle Scholar
Lin, W.Y., Hsu, L.Y., and Speyer, R.F., J. Am. Ceram. Soc. 77(5), 1162 (1994).CrossRefGoogle Scholar
Hardwick, D.A., Martin, P.L., Patankar, S.N., and Lewandowski, J.J., in Proceedings of the 1st International Symposium on Structural Intermetallics. 1993: (TMS AIME, Warrendale, PA, 1993), p. 665.Google Scholar
Zhang, S. and Munir, Z.A., J. Mater. Sci. 26, 3685 (1991).CrossRefGoogle Scholar
Newman, A., Jewett, T., Sampath, S., Berndt, C., and Herman, H., J. Mater. Res. 13 (9), 2662 (1998).CrossRefGoogle Scholar
Gleiter, H., Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
Siegel, R.W., Nanostruct. Mater. 4, 21 (1994).CrossRefGoogle Scholar
Koch, C.C., Nanostruct. Mater. 2, 109 (1993).CrossRefGoogle Scholar
Hahn, H. and Padmanabhan, K.A., Philos. Mag. B 76, 559–571 (1997).CrossRefGoogle Scholar
Schwarz, R.B., Srinivasan, S.R., Petrovic, J.J., and Maggiore, C.J., Mater. Sci. Eng. A 155, 75 (1992).CrossRefGoogle Scholar
Munir, Z.A. and Anselmi, U.-Tanburini, Mater. Sci. Rep. 3, 277 (1989).CrossRefGoogle Scholar
Munir, Z.A., Ceram. Bull. 67, 342 (1988).Google Scholar
Moore, J.J. and Feng, H.J., Prog. Mater. Sci. 39, 243 (1995).CrossRefGoogle Scholar
Merzhanov, A.G., in Combustion and Plasma Synthesis of High Temperature Materials, edited by Munir, Z.A. and Holt, J.B. (VCH publishers, New York, 1999).Google Scholar
Munir, Z.A., J. Mater. Synth. Process. 1, 387 (1993).Google Scholar
Munir, Z.A., Shon, I.J., and Yamazaki, K., Simultaneous Synthesis and Densification by Field-Activated Combustion, U.S. Patent No. 5 794 113 (11 August 1998).Google Scholar
Shon, I.J., Munir, Z.A., Yamazaki, K., and Shoda, K., J. Am. Ceram. Soc. 79, 1875 (1996).CrossRefGoogle Scholar
Charlot, F., Gaffet, E., Bernard, F., Zeghmati, B., and Niepce, J.C., Mater. Sci. Eng. A A262, 279 (1999).CrossRefGoogle Scholar
Gras, C., Charlot, F., Gaffet, E., Bernard, F., and Niepce, J.C., Acta Mater. 47, 2113 (1999).CrossRefGoogle Scholar
Gras, C., Vrel, D., Gaffet, E., and Bernard, F., J. Alloys Compd. 314, 240 (2001).CrossRefGoogle Scholar
Gauthier, V., Josse, C., Bernard, F., Gaffet, E., and Larpin, J.P., Mater. Sci. Eng. A A265, 117 (1999).CrossRefGoogle Scholar
Ch. Gras, Gaffet, E., Bernard, F., and Niepce, J.C., Mater. Sci. Eng. A A264, 94 (1999).Google Scholar
Bernard, F., Souha, H., and Gaffet, E., Mater. Sci. Eng. A A284, 301 (2000).CrossRefGoogle Scholar
Munir, Z.A., Charlot, F., Bernard, F., and Gaffet, E., U.S. Patent 6 200 515 (13 Mar. 2001).Google Scholar
Rawers, J., Slavens, G., Govier, D., Dogan, C., and Doan, R., Metall. Mater. Trans. A A27, 3126 (1996).CrossRefGoogle Scholar
Rawers, J., Nanostruct. Mater. 11, 512 (1999).Google Scholar
Munir, Z.A., Mater. Sci. Eng. A A287, 125 (2000).CrossRefGoogle Scholar
Gaffet, E., Mater. Sci. Eng. A A132, 181 (1991).CrossRefGoogle Scholar
Abdellaoui, M. and Gaffet, E., J. Alloys Compd. 198, 155 (1993).CrossRefGoogle Scholar
Abdellaoui, M. and Gaffet, E., Acta Mater. 44(2), 198, 725 (1993).CrossRefGoogle Scholar
Charlot, F., Gaffet, E., Bernard, F., and Munir, Z.A., J. Am. Ceram. Soc. 84(5), 910 (2001).Google Scholar
Bernard, F., Charlot, F., Gaffet, E., and Niepce, J.C., Int. J. SHS 7, 233 (1998).Google Scholar
Zhang, Y. and Stangle, G.C., J. Mater. Res. 10, 1828 (1995).CrossRefGoogle Scholar
Chawla, K.K., Petrovic, J.J., Alba, J. Jr., and Hexemer, R., Mater. Sci. Eng. A A261, 181 (1999).CrossRefGoogle Scholar
Jayashankar, J.S., Ross, E.N., Eason, P.D., and Kaufman, M.J., Mater. Sci. Engl. A A239–240, 485 (1997).CrossRefGoogle Scholar
Yamaguchi, M., Inui, H., and Ito, K., Acta Mater. 48, 307 (2000).CrossRefGoogle Scholar
Deevi, S.C., J. Mater. Sci. 26, 3343 (1991).CrossRefGoogle Scholar
Jo, S.W., Lee, G.W., Moon, J.T., and Kim, Y.S., Acta Mater. 44, 4317 (1996).CrossRefGoogle Scholar
Chae, S.W., Son, C.H., and Kim, Y.S., Mater. Sci. Eng. A A279, 111 (2000).CrossRefGoogle Scholar
Zhu, Y.T., Stan, M., Conzone, S.D., and Butt, D.P., J. Am. Ceram. Soc. 82, 2708 (1999).Google Scholar
Kim, Y.S., Johnson, M.R., Abbaschian, R., and Kaufman, M.J., in High-temperature Ordered Intermetallic Alloys IV, edited by Johnson, L.A., Pope, D.P., and Stiegler, J.O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 839.Google Scholar
Langford, J.L., The use of the Voigt function in determining microstructural properties from diffraction data by means of pattern decomposition, Proc. of Int. Conf. Accuracy in Powder Diffraction II, held at NIST, Gaithersburg, MD, May 26–29, 1992 (NIST, Gaithersburg, MD, 1992).Google Scholar
Halder, N.C. and Wagner, C.N.J., Acta Crystallogr. 20, 91 (1966).CrossRefGoogle Scholar
Zhang, Y. and Stangle, G.C., J. Mater. Res. 10, 1962 (1995).Google Scholar