Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T04:54:26.720Z Has data issue: false hasContentIssue false

Simulation studies of Sn-based perovskites with Cu back-contact for non-toxic and non-corrosive devices

Published online by Cambridge University Press:  24 June 2019

Saquib Ahmed*
Affiliation:
Department of Mechanical Engineering Technology, SUNY – Buffalo State, Buffalo, New York 14222, USA
Jalen Harris
Affiliation:
Department of Mechanical Engineering, California State University – Fresno, Fresno, California 93740, USA
Jon Shaffer
Affiliation:
Department of Mechanical Engineering Technology, SUNY – Buffalo State, Buffalo, New York 14222, USA
Mohan Devgun
Affiliation:
Department of Mechanical Engineering Technology, SUNY – Buffalo State, Buffalo, New York 14222, USA
Shaestagir Chowdhury
Affiliation:
Department of Mechanical and Materials Engineering, Portland State University, Portland, Oregon 97201, USA
Aboubakr Abdullah
Affiliation:
Center for Advanced Materials, Qatar University, Doha, Qatar
Sankha Banerjee
Affiliation:
Department of Mechanical Engineering, California State University – Fresno, Fresno, California 93740, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Using general-purpose photovoltaic device model, we have simulated the operation and functionality of a working Sn perovskite/Cu2O hole transport layer (HTL)/Cu back-contact device versus a standard Pb perovskite/Spiro HTL/Ag back-contact device. The results are extremely promising in that they showcase comparable cell efficiencies, with the Sn perovskite/Cu2O HTL/Cu back-contact device showing a highest 22.9% efficiency [Jsc of 353.4 A/m2, Voc of 0.84 V, fill factor (FF) of 0.77] at 427 nm active layer thickness compared with 24.6% of the standard Pb perovskite/Spiro HTL/Ag back-contact device (Jsc of 356.8 A/m2, Voc of 0.82 V, FF of 0.84) at the same active layer thickness. Jsc, Voc, and FF kinetics reveal that the Sn perovskite/Cu2O HTL/Cu back-contact device can perform better by reducing the recombination centers both within each layer matrix and in the interfacial contacts.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Snaith, H.: Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17, 372 (2018).CrossRefGoogle ScholarPubMed
Green, M.A., Ho-Baillie, A., and Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photon. 8, 506 (2014).CrossRefGoogle Scholar
Manser, J.S., Christians, J.A., and Kamat, P.V.: Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116, 2956 (2016).CrossRefGoogle ScholarPubMed
Kaltenbrunner, M., Adam, G., Glowacki, E.D., Drack, M., Schwodiauer, R., Leonat, L., Apaydin, D.H., Groiss, H., Scharber, M.C., White, M.S., Sariciftci, N.S., and Bauer, S.: Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14, 1032 (2015).CrossRefGoogle ScholarPubMed
Manser, J.S., Saidaminov, M.I., Christians, J.A., Bakr, O.M., and Kamat, V.P.: Making and breaking of lead halide perovskites. Acc. Chem. Res. 49, 330 (2016).CrossRefGoogle ScholarPubMed
McMeekin, D.P., Sadoughi, G., Rehman, W., Eperon, G.E., Saliba, M., Horantner, M.T., Haghighirad, A., Sakai, N., Korte, L., Rech, B., Johnston, M.B., Herz, L.M., and Snaith, H.J.: A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151 (2016).CrossRefGoogle ScholarPubMed
You, J.B., Hong, Z.R., Yang, Y., Chen, Q., Cai, M., Song, T.B., Chen, C.C., Lu, S.R., Liu, Y.S., Zhou, H.P., and Yang, Y.: Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674 (2014).CrossRefGoogle ScholarPubMed
Chen, B., Yang, M., Priya, S., and Zhu, K.: Origin of JV hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 7, 905 (2016).CrossRefGoogle ScholarPubMed
Zhang, Q., Hao, F., Li, J., Zhou, Y., Wei, Y., and Lin, H.: Perovskite solar cells: Must lead be replaced – and can it be done? Sci. Technol. Adv. Mater. 19, 425 (2018).CrossRefGoogle Scholar
Zhao, J., Zheng, X., Deng, Y., Li, T., Shao, Y., Gruverman, A., Shield, J., and Huang, J.: Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 9, 3650 (2016).CrossRefGoogle Scholar
Ahmed, S., Du Pasquier, A., Asefa, T., and Birnie, D.P. III: Self-assembled TiO2 with increased photoelectron production, and improved conduction and transfer: Enhancing photovoltaic performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3, 3002 (2011).CrossRefGoogle Scholar
Ahmed, S., Du Pasquier, A., Birnie, D.P. III, and Asefa, T.: Improving microstructured TiO2 photoanodes for dye sensitized solar cells by simple surface treatment. Adv. Energy Mater. 1, 879 (2011).CrossRefGoogle Scholar
deQuilettes, D.W., Zhang, W., Burlakov, V.M., Graham, D.J., Leijtens, T., Osherov, A., Bulovic, V., Snaith, H.J., Ginger, D.S., and Stranks, S.D.: Photo-induced halide redistribution in organic–inorganic perovskite films. Nat. Commun. 7, 11683 (2016).CrossRefGoogle ScholarPubMed
Snaith, H.J., Schmidt-Mende, L., Grätzel, M., and Chiesa, M.: Light intensity, temperature, and thickness dependence of the open-circuit voltage in solid-state dye-sensitized solar cells. Phys. Rev. B 74, 045306 (2006).CrossRefGoogle Scholar
Sani, F., Shafie, S., Lim, H.N., and Musa, A.O.: Perovskite solar cells: A review. Materials 11, 1008 (2018).CrossRefGoogle ScholarPubMed
GPVDM: Available at: http://gpvdm.com (accessed March 24, 2018).Google Scholar
Mackel, H. and Mackenzie, R.C.: Determination of charge-carrier mobility in disordered thin-film solar cells as a function of current density. Phys. Rev. Appl. 9, 034020 (2018).CrossRefGoogle Scholar
Erwin, W.R., MacKenzie, R.C.I., and Bardhan, R.: Understanding the limits of plasmonic enhancement in organic photovoltaics. J. Phys. Chem. C 122, 7859 (2018).CrossRefGoogle Scholar
Hume, P.A., Monks, J.P., Pop, F., Davies, E.S., Mackenzie, R.C.I., and Amabilino, D.B.: Self-assembly of chiral-at-end diketopyrrolopyrroles: Symmetry dependent solution and film optical activity and photovoltaic performance. Chem.–Eur. J. 24, 14461 (2018).CrossRefGoogle ScholarPubMed
Wang, C., Li, C., Mackenzie, R.C.I., Wen, S., Liu, Y., Ma, P., Wang, G., Tian, W., and Ruan, S.: Polyelectrolyte interlayers with a broad processing window for high efficiency inverted organic solar cells towards mass production. J. Mater. Chem. A 6, 17662 (2018).CrossRefGoogle Scholar
Du, H., Wang, W., and Zhu, J.: Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. Chin. Phys. B 25, 108802/1 (2016).CrossRefGoogle Scholar
Umari, P.P., Mosconi, E., and De Angelis, F.: Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2014).CrossRefGoogle ScholarPubMed
Chen, Y.H., Huang, P.R., Ma, T., Cao, C., and He, H.: Synthesis of Pr-doped ZnO nanoparticles: Their structural, optical, and photocatalytic properties. Chin. Phys. B 25, 27104 (2015).CrossRefGoogle Scholar
Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Herz, L.M., and Snaith, H.J.: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061 (2014).CrossRefGoogle Scholar
Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., and Kanatzidis, M.G.: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489 (2014).CrossRefGoogle Scholar
Minemoto, T. and Murata, M.: Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater. Sol. Cells 8, 133 (2015).Google Scholar
Kemp, K.W., Labelle, A.J., Thon, S.M., Ip, A.H., Kramer, I.J., Hoogland, S., and Sargent, E.H.: Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots. Adv. Energy Mater. 3, 917 (2013).CrossRefGoogle Scholar
Minemoto, T. and Murata, M.: Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J. Appl. Phys. 116, 054505 (2014).CrossRefGoogle Scholar
Minemoto, T. and Murata, M.: Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation. Curr. Appl. Phys. 14, 1428 (2014).CrossRefGoogle Scholar
Liu, F., Zhu, J., and Wei, J.: Numerical simulation: Toward the design of high-efficiency planar perovskite solar cells. Appl. Phys. Lett. 104, 253508 (2014).CrossRefGoogle Scholar
Leijtens, T., Bush, K.A., Prasanna, R., and McGehee, M.D.: Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828 (2018).CrossRefGoogle Scholar