Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T21:11:03.387Z Has data issue: false hasContentIssue false

Silver-palladium alloy particle production by spray pyrolysis

Published online by Cambridge University Press:  03 March 2011

Tammy C. Pluym
Affiliation:
Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, New Mexico 87131-2833
Toivo T. Kodas*
Affiliation:
Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, New Mexico 87131-2833
Lu-Min Wang
Affiliation:
Earth and Planetary Sciences Department, University of New Mexico, Albuquerque, New Mexico 87131-2833
Howard D. Glicksman
Affiliation:
DuPont Electronics, DuPont Company, Experimental Station, Wilmington, Delaware 19880-0334
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Spray pyrolysis was used to produce submicron Ag-Pd metal alloy particles for applications in electronic component fabrication. The particles were prepared in nitrogen carrier gas from metal nitrate precursor solutions with various compositions. The Ag-Pd alloy was the predominant phase for reactor temperatures of 700 °C and above for all compositions. The 70-30 Ag-Pd partcles were fully dense at 700 °C, but an increased reaction temperature was necessary to produce dense particles at higher Pd to Ag ratios. The extent of palladium oxidation was suppressed with increased amounts of Ag. Single-crystal particles could be produced at sufficiently high temperatures. These results show that particle phase composition, size, oxidation behavior, and morphology can be controlled by the Ag-Pd ratio in the precursor solution and by the reaction temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Amundsen, A. R. and Stem, E. W., in Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley Interscience, New York, 1978), Vol. 18, p. 228.Google Scholar
2Newnham, R. E. and Shrout, T. R., in Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley Interscience, New York, 1990), Vol. 1, p. 601.Google Scholar
3Asada, E., Ono, S., and Matsuo, M., Jpn. Patent 6331522 (1988).Google Scholar
4Borland, W., in Electronic Materials Handbook (ASM INTERNATIONAL, Metals Park, OH, 1989), Vol. 1, p. 332.Google Scholar
5Massalski, T. B. and Okamoto, H., in Binary Alloy Phase Diagrams, 2nd ed. (ASM INTERNATIONAL, Materials Park, OH, 1990), p. 72.Google Scholar
6Ferrier, G. G., Berzins, A. R., and Davey, N. M., Metal Powder Report 41, 677 (1986).Google Scholar
7Hayashi, T., Ushijima, A., and Nakamura, Y., US Patent 4776883 (1988).Google Scholar
8Gurav, A. S., Kodas, T. T., Pluym, T. C., and Xiong, Y., Aerosol Sci. Technol. 19, 411 (1993).CrossRefGoogle Scholar
9Kato, A., Takayama, A., and Morimitsu, Y., Nippon Kagaku Kaishi 12, 2342 (1985).CrossRefGoogle Scholar
10Nagashima, K., Morimitsu, Y., and Kato, A., Nippon Kagaku Kaishi 12, 2293 (1987).CrossRefGoogle Scholar
11Pluym, T. C., Lyons, S. W., Powell, Q. H., Gurav, A. S., Kodas, T. T., Wang, L. M., and Glicksman, H. D., Mater. Res. Bull. 28, 369 (1993).CrossRefGoogle Scholar
12Pluym, T. C., Powell, Q. H., Gurav, A. S., Ward, T. L., Kodas, T. T., Wang, L. M., and Glicksman, H. D., J. Aerosol Sci. 24, 383 (1993).CrossRefGoogle Scholar
13Lyons, S. W., Ortega, J., Wang, L. M., and Kodas, T.T., in Better Ceramics Through Chemistry V, edited by Hampden-Smith, M.J., Klemperer, W. G., and Brinker, C.J. (Mater. Res. Soc. Symp. Proc. 271, Pittsburgh, PA, 1992), p. 907.Google Scholar
14Zhang, S. C. and Messing, G. L., in Ceramic Powder Science III, edited by Messing, G.L., Hirano, S. I., and Hausner, H. (American Ceramic Society, Westerville, OH, 1990), p. 49.Google Scholar
15Zhang, S. C., Messing, G. L., and Borden, M., J. Am. Ceram. Soc. 73, 61 (1990).CrossRefGoogle Scholar
16Makuta, F. and Inokuma, T., Int. J. for Hybrid Microelec. 6, 74 (1983).Google Scholar
17Pepin, J. G., Adv. Ceram. Mater. 3, 517 (1988).CrossRefGoogle Scholar
18Cole, S. S. Jr., J. Am. Ceram. Soc. 68, C-106 (1985).CrossRefGoogle Scholar
19Nagashima, K., Himeda, T., and Kato, A., J. Mater. Sci. 26, 2477 (1991).CrossRefGoogle Scholar
20Lyons, S. W., Wang, L. M., and Kodas, T. T., Nanostruct. Mater. 1, 283 (1992).CrossRefGoogle Scholar
21Peskin, R. L. and Raco, R. J., J. Acoustical Soc. Am. 35, 1378 (1963).CrossRefGoogle Scholar
22Cole, S. S. Jr., J. Am. Ceram. Soc. 55, 296 (1972).CrossRefGoogle Scholar
23Cullity, B. D., Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley Publishing Company, Inc., Reading, MA, 1978), p. 102.Google Scholar