Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T13:10:12.819Z Has data issue: false hasContentIssue false

Silicon nitride nanoceramics densified by dynamic grain sliding

Published online by Cambridge University Press:  31 January 2011

Mathias Herrmann
Affiliation:
Fraunhofer Institute of Ceramic Technologies and Sintered Materials, Dresden D-01277, Germany
Zhijian Shen*
Affiliation:
Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 92 Stockholm, Sweden
Ingrid Schulz
Affiliation:
Institut für Werkstoffwissenschaft, Technical University of Dresden, Dresden D-01307, Germany
Jianfeng Hu
Affiliation:
Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 92 Stockholm, Sweden
Bostjan Jancar
Affiliation:
Jozef Stefan Institute, Advanced Materials Department K-9, Jamova 39, SI-1000 Ljubljana, Slovenia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The densification behaviors of two silicon nitride nanopowder mixtures based respectively on α-Si3N4 and β-Si3N4 as the major phase constituent were studied by spark plasma sintering. Sintering conditions were established where a low viscous liquid not in equilibrium with the main crystalline constituent(s) stimulated the grain sliding yet did not activate the reprecipitation mechanism that unavoidably yields grain growth. By this way of dynamic grain sliding full densification of silicon nitride nanoceramics was achieved with no noticeable involvement of α- to β-Si3N4 phase transformation and grain growth. This processing principle opens the way toward flexible and precise tailoring of the microstructures and properties of Si3N4 ceramics. The obtained silicon nitride nanoceramics showed improved wear resistance, particularly under higher Hertzian stresses.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Deeley, G.G., Hernert, J.M., Moore, N.C.: Dense silicon nitride. Powder Metall. 8, 145 (1960)Google Scholar
2.Bowen, L.J., Weston, R.J., Carruthers, T.G., Brook, R.J.: Hot-pressing and the α-β phase transformation in silicon nitride. J. Mater. Sci. 13, 341 (1978)CrossRefGoogle Scholar
3.Rahaman, M.N., Riley, F.L., Brook, R.J.: Mechanisms of densification during reaction hot-pressing in the system Si–Al–O–N. J. Am. Ceram. Soc. 63, (11)648 (1980)CrossRefGoogle Scholar
4.Petzow, G., Herrmann, M.: Silicon nitride ceramics, Structure and Bonding Vol. 102 (Springer Verlag, Berlin 2002)47 167Google Scholar
5.Nishimura, T., Mitomo, M., Hirotsuru, H., Kawahara, M.: Fabrication of silicon nitride nano-ceramics by spark plasma sintering. J. Mater. Sci. Lett. 14, 1046 (1995)CrossRefGoogle Scholar
6.Schneider, J.A., Risbud, S.H., Mukherjee, A.K.: Rapid consolidation processing of silicon nitride powders. J. Mater. Res. 11, 358 (1996)CrossRefGoogle Scholar
7.Shen, Z.J., Nygren, M.: Kinetic aspects of superfast consolidation of silicon nitride based ceramics by spark plasma sintering. J. Mater. Chem. 1, 204 (2001)CrossRefGoogle Scholar
8.Kawaoka, H., Adachi, T., Sekino, T., Choa, Y-H., Gao, L., Niihara, K.: Effect of α/β phase ratio on microstructure and mechanical properties of silicon nitride ceramics. J. Mater. Res. 16, 2264 (2001)CrossRefGoogle Scholar
9.Suganuma, M., Kitagawa, Y., Wada, S., Murayama, N.: Pulsed electric current sintering of silicon nitride. J. Am. Ceram. Soc. 86, 387 (2003)CrossRefGoogle Scholar
10.Xu, X., Nishimura, T., Hirosaki, N., Xie, R-J., Zhu, Y., Yamamoto, Y., Tanaka, H.: New strategies for preparing nano-sized silicon nitride ceramics. J. Am. Ceram. Soc. 88, (4)934 (2005)CrossRefGoogle Scholar
11.Hotta, M., Shinoura, T., Enomoto, N., Hojo, J.: Spark plasma sintering of nanosized amorphous silicon nitride powder with a small amount of sintering additive. J. Am. Ceram. Soc. 93, (6)1544 (2010)CrossRefGoogle Scholar
12.Herrmann, M., Schulz, I., Schubert, Chr., Hermel, W., Zalite, I., Ziegler, G.: Ultrafine Si3N4 material with low coefficients of friction and wear rates. Ceramic Forum International (German Ceramic Society Report) 75, (4)38 (1998)Google Scholar
13.Schulz, I., Herrmann, M., Reich, T., Schubert, Chr.: Silicon nitride materials with low friction coefficients. Tribol. Schmierungstech. 50, 30 (2003)Google Scholar
14.Krill, C.E., Haberkorn, R., Birringer, R.: Specification of microstructure and characterization by scattering techniques, Handbook of Nanostructured Materials and Nanotechnology Vol. 2 edited by H.S. Nalwa (Academic Press, London, UK 2000)155 209CrossRefGoogle Scholar
15.Herrmann, M., Schulz, I., Zalite, I.: Materials based on nanosized β-Si3N4-composite powders. J. Eur. Ceram. Soc. 24, 3327 (2004)CrossRefGoogle Scholar
16.Shen, Z.J., Zhao, Z., Peng, H., Nygren, M.: Formation of tough interlocking microstructures in silicon nitride based ceramics by dynamic ripening. Nature 417, 266 (2002)CrossRefGoogle ScholarPubMed
17.Wang, C.M., Pan, X.Q., Rohle, M., Riley, F.L., Mitomo, M.: Silicon nitride crystal structure and observations of lattice defects. J. Mater. Sci. 31, 5281 (1996)CrossRefGoogle Scholar
18.Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurements. J. Am. Ceram. Soc. 64, 533 (1981)CrossRefGoogle Scholar
19.Hampshire, S., Pomeroy, M.J.: Effect of composition on viscosities of rare earth oxynitride glasses. J. Non-Cryst. Solids 344, 1 (2004)CrossRefGoogle Scholar
20.Shen, Z.J., Nygren, M.: Microstructural prototyping of ceramics by kinetic engineering: Applications of spark plasma sintering. Chem. Rec. 5, (3)173 (2005)CrossRefGoogle ScholarPubMed
21.German, R.M.: Sintering Theory and Practice (John Wiley, New York 1996)Google Scholar
22.Wakai, F., Kodama, Y., Sakaguchi, S., Murayama, N., Izaki, K., Niihara, K.: A superplastic covalent crystal composite. Nature 344, 421 (1990)CrossRefGoogle Scholar
23.Shen, Z.J., Peng, H., Nygren, M.: Formidable increase of superplasticity of ceramics in presence of an electric field. Adv. Mater. 15, 1007 (2003)CrossRefGoogle Scholar
24.Schulz, I., Herrmann, M., Endler, I., Zalite, I., Speisser, B., Kreusser, J.: Nano Si3N4 composites with improved tribological properties. Lubr. Sci. 21, 69 (2009)CrossRefGoogle Scholar