Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T11:30:02.451Z Has data issue: false hasContentIssue false

Silicon Nitride Ceramics with Sodium Ion Conductive Grain Boundary Phase

Published online by Cambridge University Press:  31 January 2011

Hirokazu Kawaoka
Affiliation:
The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Tohru Sekino
Affiliation:
The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Takafumi Kusunose
Affiliation:
The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Koichi Niihara
Affiliation:
The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Get access

Abstract

Sodium ion-conductive silicon nitride ceramic with Na2O–Al2O3–SiO2 glass as the grain boundary phase was fabricated by adding Na2CO3, Al2O3, and SiO2 as sintering additives. The electrical conductivity was two and four orders of magnitude higher than that of Si3N4 ceramic with Y2O3 and Al2O3 additives at 100 and 1000°C, respectively. This result clearly indicates that ionic conductivity can be provided to insulating structural ceramics by modification of the grain boundary phase without dispersion of conductive particles.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yasutomi, Y., Nakamura, K., Sobue, M., and Kubo, Y., J. Ceram. Soc. Jpn. 97, 148 (1989).CrossRefGoogle Scholar
2.Sawaguchi, A., Toda, K., and Niihara, K., J. Am. Ceram. Soc. 74, 1142 (1991).CrossRefGoogle Scholar
3.Kao, M.Y., J. Am. Ceram. Soc. 76, 2879 (1993).CrossRefGoogle Scholar
4.Kirkpatrick, S., Rev. Modern Phys. 45, 574 (1973).CrossRefGoogle Scholar
5.McLachlan, D.S., Blaszkiewicz, M., and Newnham, R.E., J. Am. Ceram. Soc. 8, 2187 (1990).CrossRefGoogle Scholar
6.Malliaris, A. and Turner, D.T., J. Appl. Phys. 42, 614 (1971).CrossRefGoogle Scholar
7.Kusy, R.P., J. Appl. Phys. 48, 5301 (1977).CrossRefGoogle Scholar
8.Lee, J., Yano, T., Shibata, S., and Yamane, M., J. Non-Cryst. Solids 222, 120 (1997).Google Scholar
9.Eldin, F.M. Ezz and Alaily, N.A. El, Mater. Cham. Phys. 52, 175 (1998).CrossRefGoogle Scholar
10.Pigeon, R.G. and Varma, A., J. Mater. Sci. Lett. 11, 1370 (1992).CrossRefGoogle Scholar
11.Kawaoka, H., Adachi, T., Sekino, T., Choa, Y.H., Gao, L., and Niihara, K., J. Mater. Res. 16, 2264 (2001).CrossRefGoogle Scholar
12.Katano, Y., Ohno, H., and Katsuta, H., J. Nucl. Mater., 141, 396 (1986).CrossRefGoogle Scholar
13.Ohno, H., Nagasaki, T., Katano, Y., Tateno, J., and Katsuta, H., J. Nucl. Mater., 155, 372 (1988).CrossRefGoogle Scholar
14.Rao, G.R., Kokhtev, S.A., and Loehman, R.E., Ceram. Bull. 57, 591 (1978).Google Scholar
15.Kleebe, H.J., J. Ceram. Soc. Jpn. 105, 453 (1997).CrossRefGoogle Scholar