Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T01:43:37.410Z Has data issue: false hasContentIssue false

Side-chain degradation of perfluorosulfonic acid membranes: An ab initio study

Published online by Cambridge University Press:  03 July 2012

Milan Kumar
Affiliation:
Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200
Stephen J. Paddison*
Affiliation:
Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Chemical degradation of the side-chain of perfluorosulfonic acid (PFSA) membranes by hydroxyl radicals (•OH) is examined with electronic structure calculations. The energetics associated with homolytic bond cleavage and for the sequence of reactions involved in the degradation was determined. Results show that the degradation of side-chain begins with the cleavage of the C–S bond. The sequence of reactions of the side-chain with •OH indicates scission of the backbone yielding reactive end-groups. The kinetics of the C–S bond cleavage was studied via: (i) reaction of anionic fragment with a •OH; and (ii) decomposition of fragment radical. The activation energy for the second pathway was calculated to be ∼11 kcal/mol lower requiring a change in symmetry of the molecular geometry of the sulfonate group from trigonal pyramidal to trigonal planar. This suggests that although the C–S bond may be the weakest in the side chain of a PFSA ionomer, its cleavage is kinetically hindered.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K.I., and Iwashita, N.: Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107(10), 3904 (2007).CrossRefGoogle ScholarPubMed
2.Granovskii, M., Dincer, I., and Rosen, M.A.: Life cycle assessment of hydrogen fuel cell and gasoline vehicles. Int. J. Hydrogen Energy 31(3), 337 (2006).CrossRefGoogle Scholar
3.Buchi, F.N., Inaba, M., and Schmidt, T.J.: Polymer Electolyte Fuel Cell Durability (Springer, New York, NY, 2009).CrossRefGoogle Scholar
4.Wu, J., Yuan, X.Z., Martin, J.J., Wang, H., Zhang, J., Shen, J., Wu, S., and Merida, W.: A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. J. Power Sources 184(1), 104 (2008).CrossRefGoogle Scholar
5.Collier, A., Wang, H., Zi Yuan, X., Zhang, J., and Wilkinson, D.P.: Degradation of polymer electrolyte membranes. Int. J. Hydrogen Energy 31(13), 1838 (2006).CrossRefGoogle Scholar
6.Sethuraman, V.A., Weidner, J.W., Haug, A.T., and Protsailo, L.V.: Durability of perfluorosulfonic acid and hydrocarbon membranes: Effect of humidity and temperature. J. Electrochem. Soc. 155(2), B119 (2008).CrossRefGoogle Scholar
7.Inaba, M., Kinumoto, T., Kiriake, M., Umebayashi, R., Tasaka, A., and Ogumi, Z.: Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochim. Acta 51(26), 5746 (2006).CrossRefGoogle Scholar
8.Knights, S.D., Colbow, K.M., St-Pierre, J., and Wilkinson, D.P.: Aging mechanisms and lifetime of PEFC and DMFC. J. Power Sources 127(1–2), 127 (2004).CrossRefGoogle Scholar
9.Yuji Shibahara, Y.A., Izumi, Y., Nishijima, S., Honda, Y., Kimura, N., Tagawa, S., and Isoyama, G.: Analysis of thermal degradation process of Nafion-117 with age-momentum correlation method. J. Polym. Sci., Part B: Polym. Phys. 46(1), 1 (2008).CrossRefGoogle Scholar
10.Endoh, E., Terazono, S., Widjaja, H., and Takimoto, Y.: Degradation study of MEA for PEMFCs under low humidity conditions. Electrochem. Solid-State Lett. 7(7), A209 (2004).CrossRefGoogle Scholar
11.Chen, C., Levitin, G., Hess, D.W., and Fuller, T.F.: XPS investigation of Nafion® membrane degradation. J. Power Sources 169(2), 288 (2007).CrossRefGoogle Scholar
12.Bosnjakovic, A., Kadirov, M.K., and Schlick, S.: Using ESR spectroscopy to study radical intermediates in proton-exchange membranes exposed to oxygen radicals. Res. Chem. Intermed. 33, 677 (2007).CrossRefGoogle Scholar
13.Bosnjakovic, A. and Schlick, S.: Nafion perfluorinated membranes treated in fenton media: Radical species detected by ESR spectroscopy. J. Phys. Chem. B 108(14), 4332 (2004).CrossRefGoogle Scholar
14.Danilczuk, M., Bosnjakovic, A., Kadirov, M.K., and Schlick, S.: Direct ESR and spin trapping methods for the detection and identification of radical fragments in Nafion membranes and model compounds exposed to oxygen radicals. J. Power Sources 172(1), 78 (2007).CrossRefGoogle Scholar
15.Kinumoto, T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R., Tasaka, A., Iriyama, Y., Abe, T., and Ogumi, Z.: Durability of perfluorinated ionomer membrane against hydrogen peroxide. J. Power Sources 158(2), 1222 (2006).CrossRefGoogle Scholar
16.Pozio, A., Silva, R.F., De Francesco, M., and Giorgi, L.: Nafion degradation in PEFCs from end plate iron contamination. Electrochim. Acta 48(11), 1543 (2003).CrossRefGoogle Scholar
17.Okada, T., Ayato, Y., Satou, H., Yuasa, M., and Sekine, I.: The effect of impurity cations on the oxygen reduction kinetics at platinum electrodes covered with perfluorinated ionomer J. Phys. Chem. B 105(29), 6980 (2001).CrossRefGoogle Scholar
18.Bauer, R., Waldner, G., Fallmann, H., Hager, S., Klare, M., Krutzler, T., Malato, S., and Maletzky, P.: The photo-Fenton reaction and the TiO2/UV process for waste water treatment - novel developments. Catal. Today 53(1), 131 (1999).CrossRefGoogle Scholar
19.Cheng, X., Zhang, J.L., Tang, Y.H., Song, C.J., Shen, J., Song, D.T., and Zhang, J.J.: Hydrogen crossover in high-temperature PEM fuel cells. J. Power Sources 167(1), 25 (2007).CrossRefGoogle Scholar
20.Mittal, V.O., Kunz, H.R., and Fenton, J.M.: Membrane degradation mechanisms in PEMFCs. J. Electrochem. Soc. 154(7), B652 (2007).CrossRefGoogle Scholar
21.Aoki, M., Uchida, H., and Watanabe, M.: Decomposition mechanism of perfluorosulfonic acid electrolyte in polymer electrolyte fuel cells. Electrochem. Commun. 8(9), 1509 (2006).CrossRefGoogle Scholar
22.Yu, J.R., Matsuura, T., Yoshikawa, Y., Islam, M.N., and Hori, M.: In situ analysis of performance degradation of a PEMFC under nonsaturated humidification. Electrochem. Solid-State Lett. 8(3), A156 (2005).CrossRefGoogle Scholar
23.Mittal, V.O., Kunz, H.R., and Fenton, J.M.: Effect of catalyst properties on membrane degradation rate and the underlying degradation mechanism in PEMFCs. J. Electrochem. Soc. 153(9), A1755 (2006).CrossRefGoogle Scholar
24.Aoki, M., Uchida, H., and Watanabe, M.: Novel evaluation method for degradation rate of polymer electrolytes in fuel cells. Electrochem. Commun. 7(12), 1434 (2005).CrossRefGoogle Scholar
25.LaConti, A.B., Hamdan, M., and McDonald, R.C.: Handbook of Fuel Cells: Fundamentals, Technology and Applications (John Wiley & Sons, New York, 2003).Google Scholar
26.Cipollini, N.E.: Chemical aspects of membrane degradation. ECS Trans. 11(1), 1071 (2007).CrossRefGoogle Scholar
27.Teranishi, K., Kawata, K., Tsushima, S., and Hirai, S.: Degradation mechanism of PEMFC under open circuit operation. Electrochem. Solid-State Lett. 9(10), A475 (2006).CrossRefGoogle Scholar
28.Liu, W. and Zuckerbrod, D.: In situ detection of hydrogen peroxide in PEM fuel cells. J. Electrochem. Soc. 152(6), A1165 (2005).CrossRefGoogle Scholar
29.Delaney, W.E. and Liu, W.: Use of FTIR to analyze ex situ and in situ degradation of perfluorinated fuel cell ionomers. ECS Trans. 11(1), 1093 (2007).CrossRefGoogle Scholar
30.Qiao, J.L., Saito, M., Hayamizu, K., and Okada, T.: Degradation of perfluorinated ionomer membranes for PEM fuel cells during processing with H2O2. J. Electrochem. Soc. 153(6), A967 (2006).CrossRefGoogle Scholar
31.Mitov, S., Panchenko, A., and Roduner, E.: Comparative DFT study of nonfluorinated and perfluorinated alkyl and alkyl-peroxy radicals. Chem. Phys. Lett. 402(4–6), 485 (2005).CrossRefGoogle Scholar
32.Curtin, D.E., Lousenberg, R.D., Henry, T.J., Tangeman, P.C., and Tisack, M.E.: Advanced materials for improved PEMFC performance and life. J. Power Sources 131, 41 (2004).CrossRefGoogle Scholar
33.Hommura, S., Kawahara, K., and Shimodaira, T.: Chemical degradation of perfluorinated sulfonic acid membranes. Polym. Prep. Jpn. 54, 45174518 (2005).Google Scholar
34.Hamrock, S.J. and Yandrasits, M.A.: Proton exchange membranes for fuel cell applications. Polym. Rev. 46(3), 219 (2006).Google Scholar
35.Ghassemadeh, L., Marrony, M., Barrera, R., Kreuer, K.D., Maier, J., and Muller, K.: Chemical degradation of proton-conducting perflurosulfonic acid ionomer membranes studied by solid-state nuclear magnetic resonance spectroscopy. J. Power Sources 186(2), 334 (2009).CrossRefGoogle Scholar
36.Fang, X., Shen, P.K., Song, S., Stergiopoulos, V., and Tsiakaras, P.: Degradation of perfluorinated sulfonic acid films: An in situ infrared spectroelectrochemical study. Polym. Degrad. Stab. 94(10), 1707 (2009).CrossRefGoogle Scholar
37.Ghassemzadeh, L., Kreuer, K.D., Maier, J., and Mueller, K.: Evaluating chemical degradation of proton-conducting perfluorosulfonic acid ionomers in a Fenton test by solid-state 19F NMR spectroscopy. J. Power Sources 196(5), 2490 (2011).CrossRefGoogle Scholar
38.Tokumasu, T., Ogawa, I., Koyama, M., Ishimoto, T., and Miyamoto, A.: A DFT study of bond dissociation trends of perfluorosulfonic acid membrane. J. Electrochem. Soc. 158(2), B175 (2010).CrossRefGoogle Scholar
39.Ghassemzadeh, L., Kreuer, K-D., Maier, J., and Muller, K.: Chemical degradation of Nafion membranes under mimic fuel cell conditions as investigated by solid-state NMR spectroscopy. J. Phys. Chem. C 114(34), 14635 (2010).CrossRefGoogle Scholar
40.Kadirov, M.K., Bosnjakovic, A., and Schlick, S.: Membrane-derived fluorinated radicals detected by electron spin resonance in UV-irradiated Nafion and Dow ionomers: Effect of counterions and H2O2. J. Phys. Chem. B 109(16), 7664 (2005).CrossRefGoogle ScholarPubMed
41.Carlsson, A.H., Jorissen, L., and Tillmetz, W.: PFSA Membrane Degradation Mechanism: Fuel Cell Degradationversus. Ex-Situ Methods (Zentrum für Sonnenenergie und Wasserstoff-Forschung, Ulm, Germany, 2009).Google Scholar
42.Coms, F.D.: The chemistry of fuel cell membrane chemical degradation. ECS Trans. 16(2), 235 (2008).CrossRefGoogle Scholar
43.Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A.: Gaussian 03 (Gaussian Inc., Wallingford, CT, 2004).Google Scholar
44.Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648 (1993).CrossRefGoogle Scholar
45.Lee, C., Yang, W., and Parr, R.G.: Development of the Colle Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter 37(2), 785 (1988).CrossRefGoogle ScholarPubMed
46.Vosko, S.H., Wilk, L., and Nusair, M.: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 58(8), 1200 (1980).CrossRefGoogle Scholar
47.Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623 (1994).CrossRefGoogle Scholar
48.Peng, C.Y. and Schlegel, H.B.: Combining synchronous transit and quasi-Newton methods to find transition states. Isr. J. Chem. 33(4), 449 (1993).CrossRefGoogle Scholar
49.Gonzalez, C. and Schlegel, H.B.: An improved algorithm for reaction-path following. J. Chem. Phys. 90, 2154 (1989).CrossRefGoogle Scholar
50.Gonzalez, C. and Schlegel, H.B.: Reaction-path following in mass-weighted internal coordinates. J. Phys. Chem. 94(14), 5523 (1990).CrossRefGoogle Scholar
51.Wang, C. and Paddison, S.J.: Proton transfer in functionalized phosphonic acid molecules. Phys. Chem. Chem. Phys. 12(4), 970 (2010).CrossRefGoogle ScholarPubMed
52.Eikerling, M., Paddison, S.J., and Zawodzinski, T.A.: Molecular orbital calculations of proton dissociation and hydration of various acidic moieties for fuel cell polymers. J. New Mater. Electrochem. Syst. 5(1), 15 (2002).Google Scholar
53.Paddison, S.J.: Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes. Annu. Rev. Mater. Res. 33, 289 (2003).Google Scholar
54.Paddison, S.J. and Elliott, J.A.: Molecular modeling of the short-side-chain perfluorosulfonic acid membrane. J. Phys. Chem. A 109(33), 7583 (2005).CrossRefGoogle ScholarPubMed
55.Elliott, J.A. and Paddison, S.J.: Modeling of morphology and proton transport in PFSA membranes. Phys. Chem. Chem. Phys. 9(21), 2602 (2007).CrossRefGoogle ScholarPubMed
56.Clark, J.K., Paddison, S.J., Eikerling, M., Dupuis, M., and Zawodzinski, T.A.: A comparative ab initio study of the primary hydration and proton dissociation of various imide- and sulfonic acid ionomers. J. Phys. Chem. A 116(7), 1801 (2012).CrossRefGoogle ScholarPubMed
57.Laporta, M., Pegoraro, M., and Zanderighi, L.: Perfluorosulfonated membrane (Nafion): FTIR study of the state of water with increasing humidity. Phys. Chem. Chem. Phys. 1(19), 4619 (1999).CrossRefGoogle Scholar
58.Paddison, S.J.: The modeling of molecular structure and ion transport in sulfonic acid-based ionomer membranes. J. New Mater. Electrochem. Syst. 4(4), 197 (2001).Google Scholar
59.Kreuer, K.D., Paddison, S.J., Spohr, E., and Schuster, M.: Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chem. Rev. 104(10), 4637 (2004).CrossRefGoogle ScholarPubMed
60.Schiraldi, D.A.: Perfluorinated polymer electrolyte membrane durability. J. Macromol. Sci., Polym. Rev. 46(3), 315 (2006).CrossRefGoogle Scholar
61.Zhou, C., Guerra, M.A., Qiu, Z-M., Zawodzinski, T.A., and Schiraldi, D.A.: Chemical durability studies of perfluorinated sulfonic acid polymers and model compounds under mimic fuel cell conditions. Macromolecules 40(24), 8695 (2007).CrossRefGoogle Scholar