Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T02:57:16.040Z Has data issue: false hasContentIssue false

A sequential Raman analysis of the growth of diamond films on silicon substrates in a microwave plasma assisted chemical vapor deposition reactor

Published online by Cambridge University Press:  31 January 2011

L. Fayette
Affiliation:
Laboratoire d'Electrochimie et de Physicochimie des Matériaux et Interfaces (UMR 5631 INPG-CNRS, associé à l'UJF), Domaine universitaire, BP 75.38402 Saint Martin D'Heres Cedex, France
B. Marcus
Affiliation:
Laboratoire d'Electrochimie et de Physicochimie des Matériaux et Interfaces (UMR 5631 INPG-CNRS, associé à l'UJF), Domaine universitaire, BP 75.38402 Saint Martin D'Heres Cedex, France
M. Mermoux
Affiliation:
Laboratoire d'Electrochimie et de Physicochimie des Matériaux et Interfaces (UMR 5631 INPG-CNRS, associé à l'UJF), Domaine universitaire, BP 75.38402 Saint Martin D'Heres Cedex, France
N. Rosman
Affiliation:
Laboratoire d'Electrochimie et de Physicochimie des Matériaux et Interfaces (UMR 5631 INPG-CNRS, associé à l'UJF), Domaine universitaire, BP 75.38402 Saint Martin D'Heres Cedex, France
L. Abello
Affiliation:
Laboratoire d'Electrochimie et de Physicochimie des Matériaux et Interfaces (UMR 5631 INPG-CNRS, associé à l'UJF), Domaine universitaire, BP 75.38402 Saint Martin D'Heres Cedex, France
G. Lucazeau
Affiliation:
Laboratoire d'Electrochimie et de Physicochimie des Matériaux et Interfaces (UMR 5631 INPG-CNRS, associé à l'UJF), Domaine universitaire, BP 75.38402 Saint Martin D'Heres Cedex, France
Get access

Abstract

A sequential analysis of the growth of diamond films on silicon substrates in a microwave plasma assisted chemical vapor deposition (CVD) reactor has been performed by Raman spectroscopy. The plasma was switched off during measurements, but the substrate heating was maintained to minimize thermoelastic stresses. The detectivity of the present experimental setup has been estimated to be about a few tens of μmg/cm2. From such a technique, one expects to analyze different aspects of diamond growth on a non-diamond substrate. The evolution of the signals arising from the substrate shows that the scratching treatment used to increase the nucleation density induces an amorphization of the silicon surface. This surface is annealed during the first step of deposition. The evolution of the line shape of the spectra indicates that the non-diamond phases are mainly located in the grain boundaries. The variation of the integrated intensity of the Raman signals has been interpreted using a simple absorption model. A special emphasis was given to the evolution of internal stresses during deposition. It was verified that compressive stresses were generated when coalescence of crystals took place.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bonnot, A. M., Mathis, B. S., and Moulin, S., Diamond Relat. Mat. 3, 426 (1994).CrossRefGoogle Scholar
2.Hong, B., Wakagi, M., Collins, R. W., An, I., Engdahl, N. C., Drawl, W., and Messier, R., Diamond Relat. Mat. 3, 431 (1994).CrossRefGoogle Scholar
3.Bachmann, P. K., Leers, D., and Wiechert, D. U., Diamond Relat. Mat. 2, 683 (1993).CrossRefGoogle Scholar
4.Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
5.Marcus, B., Fayette, L., Mermoux, M., Abello, L., and Lucazeau, G., J. Appl. Phys. 76, 3463 (1994).CrossRefGoogle Scholar
6.Nemanich, R. J., Glass, T. J., Lucovski, G., and Glass, J. T., J. Vac. Sci. Technol. A 6, 178 (1988).CrossRefGoogle Scholar
7.Shröder, R. E., Nemanich, R. J., and Glass, J. T., Phys. Rev. B 41, 3738 (1990).CrossRefGoogle Scholar
8.Robins, L. H., Farabaugh, E. N., and Feldman, A., J. Mater. Res. 5, 2456 (1990).CrossRefGoogle Scholar
9.Sharma, S. K., Mao, H. K., Bell, P. M., and Xu, J. A., J. Raman Spec. 16, 350 (1985).CrossRefGoogle Scholar
10.Grimditch, M. H., Anastassakis, E., and Cardona, M., Phys. Rev. B 18, 901 (1978).CrossRefGoogle Scholar
11.Herchen, H. and Capelli, M. A., Phys. Rev. B 43, 11740 (1991).CrossRefGoogle Scholar
12.Herchen, H., Capelli, M. A., Landstass, M. I., Plano, M. A., and Moyer, M. D., Thin Solid Films 212, 206 (1992).CrossRefGoogle Scholar
13.Bernardez, L., McCarty, K. F., and Yang, N., J. Appl. Phys. 72, 2001 (1992).CrossRefGoogle Scholar
14.Bernardez, L. and McCarty, K. F., Diamond Relat. Mat. 3, 22 (1993).CrossRefGoogle Scholar
15.Fayette, L., Marcus, B., Mermoux, M., Abello, L., and Lucazeau, G., Diamond Relat. Mat. 3, 438 (1994).CrossRefGoogle Scholar
16.Fayette, L., Marcus, B., Mermoux, M., Rosman, N., Abello, L., and Lucazeau, G., J. Appl. Phys. 76, 1604 (1994).CrossRefGoogle Scholar
17.Mermoux, M., Fayette, L., Marcus, B., Rosman, N., Abello, L., and Lucazeau, G., Diamond Relat. Mat. 4, 745 (1995).CrossRefGoogle Scholar
18.Mermoux, M., Fayette, L., Marcus, B., Rosman, N., Abello, L., and Lucazeau, G., Analusis 23, 325 (1995).Google Scholar
19.Fayette, L., Mermoux, M., Marcus, B., Rosman, N., Abello, L., and Lucazeau, G., ****Adv. New Diamond Sci. Technol. 4th ICNDST, Kobe, Japan, 17–22 July, edited by Saito, S., Fujimori, N., Fukunaga, O., Kamo, M., Kobashi, K., and Yoshikawa, M., 135 (1994).Google Scholar
20.Fayette, L., Ph.D. Thesis, INPG Grenoble (1995).Google Scholar
21.Fayette, L., Marcus, B., and Mermoux, M., Diamond Relat. Mat. 3, 480 (1994).CrossRefGoogle Scholar
22.Balkanski, M., Wallis, R. F., and Haro, E., Phys. Rev. B 28, 1928 (1983).CrossRefGoogle Scholar
23.Wild, C., Koidl, P., Müller-Sebert, W., Walcher, H., Kohl, R., Herres, N., Locher, R., Samlenski, R., and Brenn, R., Diamond Relat. Mat. 2, 158 (1993).CrossRefGoogle Scholar
24.Wild, C., Kohl, R., Herres, N., Müller-Sebert, W., and Koidl, P., Diamond Relat. Mat. 3, 373 (1994).CrossRefGoogle Scholar
25.Wagner, J., Ramsteiner, M., Wild, J., and Koidl, P., Phys. Rev. B 40, 1817 (1989).CrossRefGoogle Scholar
26.Ramsteiner, M. and Wagner, J., Appl. Phys. Lett. 51, 1355 (1987).CrossRefGoogle Scholar
27.Loudon, R. J., J. Phys. 26, 677 (1964).CrossRefGoogle Scholar
28.Richter, H., Wang, Z. P., and Ley, L., Solid State Commun. 39, 625 (1981).CrossRefGoogle Scholar
29.Tiong, K. K., Amirtharaj, P. M., Pollak, F. H., and Aspnes, D. E., Appl. Phys. Lett. 44, 122 (1984).CrossRefGoogle Scholar
30.Nemanich, R. J., Solin, S. A., and Martin, R. A., Phys. Rev. B 23, 6348 (1981).CrossRefGoogle Scholar
31.Grice, Y. H. Le, Nemanich, R. J., Glass, J. T., Lee, Y. H., Rudder, R. A., and Markunas, R. J., in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 219.Google Scholar
32.Ager, J. W. III, Veirs, D. Kirk, and Rosenblatt, G. M., Phys. Rev. B 43, 6491 (1991).CrossRefGoogle Scholar
33.Johnston, C., Crossley, A., Jones, A. M., Chaker, P. R., Cullen, F. L., and Buckley-Golder, I. M., J. Phys. IV C2, 931 (1989).Google Scholar
34.Schafer, L., Bluhm, A., Klages, C. P., Lockel, B., Buchmann, L. M., and Huber, H. L., Diamond Relat. Mat. 2, 1191 (1993).CrossRefGoogle Scholar
35.Schwarzbach, D., Haubner, R., and Lux, B., Diamond Relat. Mat. 3, 757 (1994).CrossRefGoogle Scholar
36.Windischmann, H. and Epps, G. F., Diamond Relat. Mat. 1, 656 (1992).CrossRefGoogle Scholar
37.Windischmann, H., Epps, G. F., Cong, Y., and Collins, R. W., J. Appl. Phys. 69, 2231 (1991).CrossRefGoogle Scholar