Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T10:06:15.508Z Has data issue: false hasContentIssue false

Semitransparent all-oxide p-NiO/n-ZnO nanowire ultraviolet photosensors

Published online by Cambridge University Press:  25 September 2013

Ki Ryong Lee
Affiliation:
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Cheon Cheon-dong, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 440-746, Republic of Korea
Byung Oh Jung
Affiliation:
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Cheon Cheon-dong, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 440-746, Republic of Korea
Sung Woon Cho*
Affiliation:
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Cheon Cheon-dong, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 440-746, Republic of Korea
Karuppanan Senthil
Affiliation:
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Cheon Cheon-dong, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 440-746, Republic of Korea
Hyung Koun Cho*
Affiliation:
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Cheon Cheon-dong, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 440-746, Republic of Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

All-oxide ultraviolet (UV) photosensors based on NiO/ZnO nanowire heterostructure were fabricated on corning glass substrates. The p-type NiO layers were directly deposited on the ZnO nanowire arrays grown on the AZO bottom electrode/glass for the formation of a p–n diode, followed by the growth of the ITO top electrode layer for the electrical interconnection of nanostructures. The fabricated device structure showed a transmittance value of about 60% in the visible region, resulting in semitransparent properties. The current–voltage (IV) characteristics of the fabricated p–n heterostructure showed a typical rectifying behavior with a current rise at about 4 V and an I(forward)/I(reverse) ratio of about 11.3 at 8 V. In addition, the ITO/p-NiO/n-ZnO/AZO structure responded at a wave-length position of 370 nm in reverse bias, together with weak photoresponse in the visible region. An UV sensor based on the all-oxide ZnO nanowire absorber exhibited improved photoresponse compared to the device based on a ZnO thin film.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ohta, H., Kawamura, K., Orita, M., Hirano, M., Sarukura, N., and Hosono, H.: Current injection emission from a transparent p–n junction composed of p-SrCu2O2/n-ZnO. Appl. Phys. Lett. 77, 475 (2000).CrossRefGoogle Scholar
Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., and Hosono, H.: Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300, 1269 (2003).CrossRefGoogle ScholarPubMed
Hoffman, R.L., Norris, B.J., and Wager, J.F.: ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733 (2003).CrossRefGoogle Scholar
Yang, W., Hullavarad, S., Nagaraj, B., Takeuchi, I., Sharma, R., Venkatesan, T., Vispute, R., and Shen, H.: Compositionally-tuned epitaxial cubic MgZnO on Si (100) for deep ultraviolet photodetectors. Appl. Phys. Lett. 82, 3424 (2003).CrossRefGoogle Scholar
Monroy, E., Calle, F., Pau, J., Munoz, E., Omnes, F., Beaumont, B., and Gibart, P.: AlGaN-based UV photodetectors. J. Cryst. Growth 230, 537 (2001).CrossRefGoogle Scholar
Pan, Z.W., Dai, Z.R., and Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947 (2001).CrossRefGoogle ScholarPubMed
Gu, Y., Kuskovsky, I.L., Yin, M., OBrien, S., and Neumark, G.: Quantum confinement in ZnO nanorods. Appl. Phys. Lett. 85, 3833 (2004).CrossRefGoogle Scholar
Liang, S., Sheng, H., Liu, Y., Huo, Z., Lu, Y., and Shen, H.: ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth 225, 110 (2001).CrossRefGoogle Scholar
Razeghi, M. and Rogalski, A.: Semiconductor ultraviolet detectors. J. Appl. Phys. Lett. 79, 7433 (1996).Google Scholar
Mares, J., Boutwell, R., Wei, M., Scheurer, A., and Schoenfeld, W.: Deep-ultraviolet photodetectors from epitaxially grown NixMg1-xO. Appl. Phys. Lett. 97, 161113 (2010).CrossRefGoogle Scholar
Mares, J., Boutwell, C., Scheurer, A., Falanga, M., and Schoenfeld, W.: Cubic ZnxMg1-xO and NixMg1-xO thin films grown by molecular beam epitaxy for deep-UV optoelectronic applications, in Proceedings of the SPIE 2010 International, San Francisco, 2010 (SPIE, San Francisco, CA, 2010), p. 76031B.Google Scholar
Kim, D.C., Seo, S., Ahn, S.E., Suh, D.S., Lee, M.J., Park, B.H., Yoo, I.K., Baek, I., Kim, H.J., and Ryu, B.I.: Electrical observations of filamentary conductions for the resistive memory switching in NiO films. Appl. Phys. Lett. 88, 202102 (2006).CrossRefGoogle Scholar
Kim, D.C., Mahanta, S.K., Kong, B.H., Cho, H.K., and Kim, H.S.: ZnO nanorod arrays grown on glass substrates below glass transition temperature by metalorganic chemical vapor deposition. J. Mater. Sci. - Mater. Electron. 20, 245 (2009).CrossRefGoogle Scholar
Zhang, J. and Que, W.: Preparation and characterization of sol–gel Al-doped ZnO thin films and ZnO nanowire arrays grown on Al-doped ZnO seed layer by hydrothermal method. Sol. Energy Mater. Sol. Cells 94, 2181 (2010).CrossRefGoogle Scholar
Kim, D.C., Jung, B.O., Kwon, Y.H., and Cho, H.K.: Highly sensible ZnO nanowire ultraviolet photodetectors based on mechanical Schottky contact. J. Electrochem. Soc. 159, K10 (2011).CrossRefGoogle Scholar
Mohanta, S., Kim, D., Cho, H., Chua, S., and Tripathy, S.: Structural and optical properties of ZnO nanorods grown by metal organic chemical vapor deposition. J. Cryst. Growth 310, 3208 (2008).CrossRefGoogle Scholar
Yao, B., Chan, Y., and Wang, N.: Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 81, 757 (2002).CrossRefGoogle Scholar
Hari, P., Baumer, M., Tennyson, W., and Bumm, L.: ZnO nanorod growth by chemical bath method. J. Non-Cryst. Solids 354, 2843 (2008).CrossRefGoogle Scholar
Kim, D.C., Kong, B.H., Cho, H.K., Park, D.J., and Lee, J.Y.: Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metal organic chemical vapor deposition. Nanotechnology 18, 015603 (2006).CrossRefGoogle Scholar
Liu, B. and Zeng, H.C.: Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125, 4430 (2003).CrossRefGoogle ScholarPubMed
Kong, B.H., Choi, M.K., Cho, H.K., Kim, J.H., Baek, S., and Lee, J.H.: Conformal coating of conductive ZnO: Al films as transparent electrodes on high aspect ratio Si microrods. Electrochem. Solid-State Lett. 13, K12 (2010).CrossRefGoogle Scholar
Lee, J.H., Kwon, Y.H., Kong, B.H., Lee, J.Y., and Cho, H.K.: Biepitaxial growth of high-quality semiconducting NiO thin films on (0001) Al2O3 substrates: Microstructural characterization and electrical properties. Cryst. Growth Des. 12, 2495 (2012).CrossRefGoogle Scholar
Kong, B.H., Mohanta, S.K., Kim, D.C., and Cho, H.K.: Optical and structural properties of ZnO thin films grown on various substrates by metal organic chemical vapor deposition. Physica B 401, 399 (2007).CrossRefGoogle Scholar
Soci, C., Zhang, A., Xiang, B., Dayeh, S.A., Aplin, D., Park, J., Bao, X., Lo, Y-H., and Wang, D.: ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7(4), 1003 (2007).CrossRefGoogle ScholarPubMed
Ji, L., Peng, S., Su, Y.K., Young, S.J., Wu, C., and Cheng, W.: Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays. Appl. Phys. Lett. 94, 203106 (2009).CrossRefGoogle Scholar
Kwon, Y.H., Chun, S.H., Han, J-H., and Cho, H.K.: Correlation between electrical properties and point defects in NiO thin films. Met. Mater. Int. 18, 1003 (2012).CrossRefGoogle Scholar