Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T19:08:40.008Z Has data issue: false hasContentIssue false

Semi-insulating cadmium telluride at low impurity concentrations

Published online by Cambridge University Press:  03 March 2011

M. Fiederle*
Affiliation:
Kristallographisches Institut, Albert Ludwigs Universität, Hebelstrasse 25, Freiburger Materialforschungszentrum, Stefan-Meier-Strasse 21, Freiburg D-79104, Germany
V. Babentsov
Affiliation:
Kristallographisches Institut, Albert Ludwigs Universität, Hebelstrasse 25, Freiburger Materialforschungszentrum, Stefan-Meier-Strasse 21, Freiburg D-79104, Germany
A. Fauler
Affiliation:
Kristallographisches Institut, Albert Ludwigs Universität, Hebelstrasse 25, Freiburger Materialforschungszentrum, Stefan-Meier-Strasse 21, Freiburg D-79104, Germany
W. Witte
Affiliation:
Kristallographisches Institut, Albert Ludwigs Universität, Hebelstrasse 25, Freiburger Materialforschungszentrum, Stefan-Meier-Strasse 21, Freiburg D-79104, Germany
K.W. Benz
Affiliation:
Kristallographisches Institut, Albert Ludwigs Universität, Hebelstrasse 25, Freiburger Materialforschungszentrum, Stefan-Meier-Strasse 21, Freiburg D-79104, Germany
R.B. James
Affiliation:
Energy, Environment and National Security Directorate, Brookhaven National Laboratory, Building 460, Upton, New York 11973
*
a)Address all correspondence to this author. e-mail: [email protected]-freiburg.de
Get access

Abstract

We report a substantial reduction in the impurity concentration of semi-insulating CdTe:Ge grown by the vertical Bridgman method by using sublimation of the feed material. Specific resistivity (ρdark) values of up to 3 × 109 Ω cm were obtained for samples with a relatively high photosensitivity (PS) value and optimal compensation. Concentrations of impurities in the feed and as-grown crystals were determined by the glow discharge mass spectroscopy (GDMS) method. The energy levels in the band-gap were studied by photoluminescence (PL), and the data were correlated with the GDMS measurements. The highest values of ρdark and PS were observed in the regions where the PL bands via the deep levels of Ge and Te antisite were present.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schlesinger, T.E., Toney, J.E., Yoon, H., Lee, E.Y., Brunett, B.A., Franks, L. and James, R.B., Mater. Sci. Eng. R 32 103 (2001).CrossRefGoogle Scholar
2Panchuk, O., Savitskiy, A., Fochuk, P., Nykonyuk, Ye., Parfenyuk, O., Shcherbak, L., Ilashchuk, M., Latsunyuk, L. and Feychuk, P., J. Cryst. Growth 197 607 (1999).CrossRefGoogle Scholar
3Fiederle, M., Babentsov, V., Franc, J., Fauler, A., Benz, K.W., James, R.B. and Cross, E., J. Cryst. Growth 243 77 (2002).CrossRefGoogle Scholar
4Corregidor, V., Diéguez, E., Castaño, J.L., Fiederle, M., Babentsov, V., Fauler, A. and Benz, K., Appl. Phys. Lett. 81 5153 (2002).CrossRefGoogle Scholar
5Fiederle, M., Feltgen, T., Meinhardt, J., Rogolla, M. and Benz, K.W., J. Cryst. Growth 197 635 (1999).Google Scholar
6Corregidor, V., Babentsov, V., Fiederle, M., Feltgen, T., Benz, K.W. and Diéguez, E., J. Mater. Res. 17 1069 (2002).CrossRefGoogle Scholar
7Babentsov, V., Corregidor, V., Castaño, J.L., Fiederle, M., Feltgen, T., Benz, K.W. and Diéguez, E., Cryst. Res. Technol. 36 535 (2001).3.0.CO;2-R>CrossRefGoogle Scholar
8Song, S.H., Wang, J., Isshiki, M.. Cryst. Growth 236 165 (2002).CrossRefGoogle Scholar
9Hassani, S., Lusson, A., Tromson, A., Triboulet, R.. Cryst. Growth 249 121 (2003).CrossRefGoogle Scholar
10Kvit, A.V., Klevkov, Yu.V., Medvedev, S.A., Bagaev, V.S., Perestoronin, A.V., Plotnikov, A.F.. Semiconductors 34 17 (2000).Google Scholar
11Zha, M., Gombia, E., Bissili, F., Zappettini, A. and Zanotti, L., Phys. Status Solidi B 229 15 (2002).Google Scholar
12Stibal, R., Windscheif, J. and Jantz, W., Semicond. Sci. Technol. 6 995 (1991).CrossRefGoogle Scholar
13Zhonghai, Yu, Hofer, S.G., Giles, N.C., Myers, T.H. and Summers, C.J., Phys. Rev. B 51 13789 (1995).Google Scholar
14Stadler, W., Hofmann, D.M., Alt, H.C., Muschik, T., Meyer, B.K., Weigel, E., Müller-Vogt, G., Salk, M., Rupp, E. and Benz, K.W., Phys. Rev. B 51 10619 (1995).CrossRefGoogle Scholar
15Pal, U., Fernandez, P., Piqueras, J., Sochinskii, N.V. and Diéguez, E., J. Appl. Phys. 78 1992 (1995).CrossRefGoogle Scholar
16Becker, U., Rudolph, P., Boyn, R., Wienecke, M. and Utke, I., Phys. Status Solidi A 120 653 (1990).Google Scholar
17Neumark, G.F., Phys. Rev. B 26 2250 (1982).CrossRefGoogle Scholar
18Johnson, E.J., Kafalas, J.A., Davies, R.W.. J. Appl. Phys. 54 204 (1983).Google Scholar
19Fiederle, M., Eiche, C., Salk, M., Schwarz, R., Benz, K.W., Stadler, W., Hofman, D.M. and Meyer, B.K., J. Appl. Phys. 84 6689 (1998).CrossRefGoogle Scholar
20Chu, M., Terterian, S., Ting, D., Wang, C.C., Gurgenian, H.K. and Mesropian, Sh., Appl. Phys. Lett. 79 2728 (2001).CrossRefGoogle Scholar