Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T22:33:16.688Z Has data issue: false hasContentIssue false

Self-organization of phthalocyanines on Al2O3 (1120) in aligned and ordered films

Published online by Cambridge University Press:  03 March 2011

E. Barrena*
Affiliation:
Max-Planck-Institut für Metallforschung, 70569 Stuttgart, Germany
J.O. Ossó
Affiliation:
Max-Planck-Institut für Metallforschung, 70569 Stuttgart, Germany, and Institut de Ciència de Materials de Barcelona - CSIC, Esfera UAB, 08193 Bellaterra, Spain
F. Schreiber
Affiliation:
Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX13QZ, United Kingdom
M. Garriga
Affiliation:
Institut de Ciència de Materials de Barcelona - CSIC, Esfera UAB, 08193 Bellaterra, Spain
M.I. Alonso
Affiliation:
Institut de Ciència de Materials de Barcelona - CSIC, Esfera UAB, 08193 Bellaterra, Spain
H. Dosch
Affiliation:
Max-Planck-Institut für Metallforschung, 70569 Stuttgart, Germany, and Theoretische und Angewandte Physik, Universität Stuttgart, 70550 Stuttgart, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We studied the self-organization process of F16CuPc films (20–30 ML) on stepped Al2O3 (1120) substrates. X-ray diffraction measurements revealed a highly ordered layered structure with the molecules in a nearly upright configuration. The morphology, investigated by atomic force microscopy, consisted of long (several microns) and narrow (20–100 nm) needlelike terraces unidirectionally aligned along one of the main crystallographic directions of the Al2O3 (1120) surface. High resolution atomic force microscopy images revealed in-plane molecular order with the molecular stacking direction parallel to the needlelike terraces. Such anisotropic morphology is the result of a self-organization process of F16CuPc in elongated crystallites driven to a preferential orientation by the interaction with the substrate. Spectroscopic ellipsometry showed that these films exhibit anisotropic optical properties correlated with the molecular arrangement.

Type
Articles—Organic Electronics Special Section
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Forrest, S.R.: Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97, 1793 (1997).Google Scholar
2.Horowitz, G. Organic field-effect trasistors. Adv. Mater. 10, 365 (1998)Google Scholar
3.Dimitrakopoulus, C.D. and Mascaro, D.J.: Organic thin-film transistors: A review of recent advances. IBM. J. Res. Dev. 45, 11 (2001).Google Scholar
4.Schlettwein, D.: Electronic Properties of Molecular Organic Semiconductor Thin Films (Academic Press, San Diego, CA, 2001)Google Scholar
5.Hooks, D.E., Fritz, T. and Ward, M.D.: Epitaxy and molecular organization on solid substrates. Adv. Mater. 13, 227 (2001).Google Scholar
6.Koma, A.: Molecular beam epitaxial growth of organic thin films. Prog. Crystal Growth Charact. 30, 129 (1995).Google Scholar
7.Umbach, E., Sokolowski, M. and Fink, R.: Substrate-interaction, long-range order, and epitaxy of large organic adsorbates. Appl. Phys. A 63, 656 (1996).CrossRefGoogle Scholar
8.Yamashita, A. and Hayashi, T.: OMBD of metallophthalocyanines. Adv. Mater. 8, 791 (1996).Google Scholar
9.Krause, B., Dürr, A.C., Ritley, K.A., Schreiber, F. and Dosch, H.: On the coexistence of different polymorphs in organic epitaxy: Alpha and beta phase of PTCDA on Ag(111). Appl. Surf. Sci. 175–176, 332 (2001).CrossRefGoogle Scholar
10.Kendrick, C. and Kahn, A.: Epitaxial growth and phase transitions in multilayers of the organic semiconductor PTCDA on InAs(001). J. Cryst. Growth 181, 181 (1997).Google Scholar
11.Fenter, P., Schreiber, F., Zhou, L., Eisenberger, P. and Forrest, S.R.: In situ studies of morphology, strain, and growth modes of a molecular organic thin film. Phys. Rev. B 56, 3046 (1997).CrossRefGoogle Scholar
12.Krause, B., Dürr, A.C., Ritley, K.A., Schreiber, F., Dosch, H. and Smilgies, D.: Structure and growth morphology of an archetypal system for organic epitaxy: PTCDA on Ag(111). Phys. Rev. B 66, 235404 (2002).Google Scholar
13.Dürr, A.C., Schreiber, F., Ritley, K.A., Kruppa, V., Krug, J., Dosch, H. and Struth, B.: Rapid roughening in thin film growth of the organic semiconductor diindenoperylene (DIP). Phys. Rev. Lett. 90, 016104 (2003).CrossRefGoogle Scholar
14.Krause, B., Dürr, A., Schreiber, F., Dosch, H. and Seeck, O.: Thermal stability and partial dewetting of crystalline organic thin films: 3,4,9,10-perylenetetracarboxylic dianhydride on Ag(111). J. Chem. Phys. 119, 3429 (2003).CrossRefGoogle Scholar
15.van Craats, A.M. de, Stutzmann, N., Bunk, O., Nielsen, M.M., Watson, M., Müllen, K., Chanzy, H.D., Sirringhaus, H. and Friend, R.H.: Meso-epitaxial solution-growth of self-organizing discotic liquid-crystalline semiconductors. Adv. Mater. 15, 495 (2003).CrossRefGoogle Scholar
16.Piris, J., Debije, M.G., Stutzmann, N., van Craats, A.M. de, Watson, M.D., Müllen, K. and Warman, J.M.: Anisotropy in the mobility and photogeneration of charge carriers in thin films of discotic hexabenzocoronenes, columnarly self-assembled on friction-deposited poly (tetrafluoroethylene). Adv. Mater. 15, 1736 (2003).Google Scholar
17.Ossó, J.O., Schreiber, F., Kruppa, V., Dosch, H., Garriga, M., Alonso, M.I. and Cerdeira, F.: Controlled molecular alignment in phthalocyanine thin films on stepped sapphire surfaces. Adv. Funct. Mat. 12, 455 (2002).Google Scholar
18.Bao, Z., Lovinger, A.J. and Brown, J.: New air-stable n-channel organic thin film transistors. J. Am. Chem. Soc. 120, 207 (1998).Google Scholar
19.Alonso, M.I., Garriga, M., Ossó, J.O., Schreiber, F., Barrena, E. and Dosch, H.: Strong optical anisotropies of F16CuPc thin films studied by sprectroscopic ellipsometry. J. Chem. Phys. 119, 6335 (2003).CrossRefGoogle Scholar
20.Ossó, J.O., Garriga, M., Schreiber, F., Barrena, E., Alonso, M.I., and Dosch, H.. Bulk crystal structure of copper hexadecafluorophthalocyanine. (2004, unpublished)Google Scholar
21.Yoshimoto, M., Maeda, T., Ohnishi, T., Koinuma, H., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R. and Miyamoto, A.: Atomic-scale formation of ultrasmooth surfaces on sapphire substrates for high-quality thin-film fabrication. Appl. Phys. Lett. 67, 2615 (1995).Google Scholar
22.Beitel, G., Markert, K., Wiechers, J., Hrbek, J., and Behm, R.J., Characterization of Single-Crystal a-Al2O3 (0001) and (1120) Surfaces and Ag /Al2O3 Model Catalysts by Atomic Force Microscopy (Springer-Verlag, Berlin, Heidelberg, Germany, 1993)Google Scholar
23.Becker, Th., Birkner, A., Witte, G. and Wöll, Ch.: Microstructure of the α–Al2O3 (1120) surface. Phys. Rev. B 65, 115401 (2002).Google Scholar
24.Ossó, J.O., Schreiber, F., Alonso, M.I., Garriga, M., Barrena, E. and Dosch, H.: Structure, morphology, and optical properties of thin films of F16CuPc grown on silicondioxide. Organic Electron. 5, 135 (2004).CrossRefGoogle Scholar
25.Iwatsu, F., Kobayashi, T. and Uyeda, N.: Solvent effects on crystal-growth and transformation of zinc phthalocyanine. J. Phys. Chem. 84, 3223 (1980).CrossRefGoogle Scholar