Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T22:24:49.689Z Has data issue: false hasContentIssue false

Secondary ion mass spectrometry study of photorefractive-damage-resistant locally Er/Mg-doped near-stoichiometric Ti:Mg:Er:LiNbO3 strip waveguides

Published online by Cambridge University Press:  31 January 2011

Bei Chen
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China; Key Laboratory of Optoelectronics Information and Technical Science (Tianjin University), Ministry of Education, Tianjin 300072, People's Republic of China; and Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, People's Republic of China
Edwin Yue-Bun Pun
Affiliation:
Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, People's Republic of China
Get access

Abstract

Secondary-ion mass spectrometry (SIMS) was used to study the profile characteristics and diffusion properties of Mg, Ti, and Er ions in photorefractive-damage-resistant locally Er/Mg-diffused near-stoichiometric (NS) Ti:Mg:Er:LiNbO3 strip waveguides fabricated on two Z-cut initially congruent, undoped LiNbO3 substrates in sequence by local Er doping at 1100 °C or 1130 °C in air, Mg/Ti pre-diffusion at 1100 °C in wet O2, and post Li-rich vapor transport equilibration (VTE) treatment at 1100 °C. For comparison, a SIMS study was also carried out on the waveguides fabricated without the post-VTE treatment. In order to compensate for the refractive index decrease arising from both the Mg doping and the post-VTE treatment, and hence to get a positive net index increment profile in the Ti-diffused layer, a thicker Ti-film of around 170 nm was coated. Nevertheless, SIMS results show that the Ti diffusion reservoir, as well as the Er and Mg reservoirs, was exhausted. From the SIMS profiles, characteristic diffusion parameters such as the 1/e diffusion width (for Ti only) and depth, diffusivity, and surface concentration of the Mg, Ti, and Er ions are obtained. It is interesting that the Mg distribution in the NS waveguide layer is desirably homogeneous with a concentration [(1.7–2.0) ± 0.3 mol%] higher than the optical damage concentration threshold. The Ti profile follows a sum of two error functions along the lateral direction of NS waveguides with a diffusion width of (12–13) ± 0.5 μm, and a Gaussian function in the depth direction with a 1/e depth of (5.1–6.0) ± 0.2 μm. The Er profile follows also a Gaussian function with a 1/e depth of (3.7–4.4) ± 0.3 μm. In the NS waveguide layer, the mean diffusivity is (7.1 ± 2.2) to (8.3 ± 2.8) μm2/h for Mg, (3.5 ± 0.3) to (4.5 ± 0.4) μm2/h in the lateral direction and (0.54 ± 0.04) to (1.13 ± 0.08) μm2/h in the depth direction for Ti, and (4.1 ± 0.4) to (5.5 ± 0.5) × 10−2 μm2/h for Er. The effects of Li outward diffusion in the initial Er doping procedure, and the Mg codiffusion and post-VTE treatment on the mean Mg, Ti, and Er diffusivities are discussed in comparison with the previously reported results on single Mg, Ti, or Er diffusion and Mg/Ti codiffusion in a pure or homogeneously MgO-doped congruent LiNbO3 crystal. Finally, the keys to the success of the fabrication procedure adopted are discussed.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brinkmann, R., Sohler, W., Suche, H.Continuous-wave erbium-diffused LiNbO3 waveguide laser. Electron. Lett. 27, 415 (1991)CrossRefGoogle Scholar
2.Becker, Ch., Oesselke, T., Pandavenes, J., Ricken, R., Rochhausen, K., Schreiberg, G., Sohler, W., Suche, H., Wessel, R., Balsamo, S., Montrosset, I., Sciancalepore, D.Advanced Ti:Er:LiNbO3 waveguide lasers. IEEE J. Sel. Top. Quantum Electron 6, 101 (2000)CrossRefGoogle Scholar
3.Amin, J., Aust, J.A., Sanford, N.A.Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3. Appl. Phys. Lett. 69, 3785 (1996)CrossRefGoogle Scholar
4.Helmfrid, S., Arvidsson, G., Webjorn, J., Linnarsson, M., Pihl, T.Stimulated emission in Er:Ti:LiNbO3 waveguides close to 1.53 μm transition. Electron. Lett. 27, 913 (1991)CrossRefGoogle Scholar
5.Huang, C.H., McCaughan, L.980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: A comparison with 1484-nm pumping. IEEE J. Sel. Top. Quantum Electron. 2, 367 (1996)CrossRefGoogle Scholar
6.Huang, C.H., McCaughan, L.Photorefractive-damage-resistant Er-indiffused MgO:LiNbO3 ZnO-waveguide amplifier and lasers. Electron. Lett. 33, 1639 (1997)CrossRefGoogle Scholar
7.Cantelar, E., Torchia, G.A., Sanz-Garcia, J.A., Pernas, P.L., Lifante, G., Cusso, F.Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides. Appl. Phys. Lett. 83, 2991 (2003)CrossRefGoogle Scholar
8.Das, B.K., Ricken, R., Sohler, W.Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide. Appl. Phys. Lett. 83, 1515 (2003)CrossRefGoogle Scholar
9.Das, B.K., Ricken, R., Quiring, V., Suche, H., Sohler, W.Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide. Opt. Lett. 29, 165 (2004)CrossRefGoogle Scholar
10.Schreiber, G., Hofmann, D., Grundkotter, W., Lee, Y.L., Suche, H., Quiring, V., Ricken, R., Sohler, W.Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides. Proc. SPIE 4277, 144 (2001)CrossRefGoogle Scholar
11.Baumann, I., Brinkmann, R., Dinand, M., Sohler, W., Beckers, L., Buchal, C., Fleuster, M., Holzbrecher, H., Paulus, H., Muller, K.H., Gog, T., Materlik, G., Witte, O., Stolz, H., von der Osten, W.Erbium incorporation in LiNbO3 by diffusion-doping. Appl. Phys. A 64, 33 (1997)CrossRefGoogle Scholar
12.Caccavale, F., Segato, F., Mansour, I., Almeida, J.M., Leite, A.P.Secondary ion mass spectrometry study of erbium diffusion in lithium niobate crystals. J. Mater. Res. 13, 1672 (1998)CrossRefGoogle Scholar
13.Haruna, M., Sewai, H., Nishihara, H., Ikunishi, S., Gozen, T., Tanaka, H.Efficient laser oscillation in thermally Nd-diffused MgO:LiNbO3, singlemode waveguides. Electron. Lett. 30, 412 (1994)CrossRefGoogle Scholar
14.Zhang, D.L., Hua, P.R., Pun, E.Y.B.Er3+ diffusion in congruent LiNbO3 crystal doped with 4.5 mol% MgO. J. Appl. Phys. 103, 113513 (2007)CrossRefGoogle Scholar
15.Furukawa, Y., Kitamura, K., Takekawa, S., Miyamoto, A., Terao, M., Suda, N.Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations. Appl. Phys. Lett. 77, 2494 (2000)CrossRefGoogle Scholar
16.Péter, Á., Polgár, K., Kovács, L., Lengyel, K.Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals. J. Cryst. Growth 284, 149 (2005)CrossRefGoogle Scholar
17.Zhang, D.L., Zhang, P., Zho, H.J., Pun, E.Y.B.Characterization of near-stoichiometric Ti:LiNbO3 strip waveguides with varied substrate refractive index in guiding layer. J. Opt. Soc. Am. A 25, 2558 (2008)CrossRefGoogle ScholarPubMed
18.Zhang, D.L., Hua, P.R., Pun, E.Y.B.Near-stoichiometric Ti:LiNbO3 strip waveguides fabricated by standard Ti diffusion and post VTE. IEEE Photonics Technol. Lett. 21, 1655 (2009)Google Scholar
19.Zhang, D.L., Hua, P.R., Pun, E.Y.B.Photorefractive-damage-resistant locally Er/Mg-doped near-stoichiometric Ti:Mg:Er:LiNbO3 strip waveguide: A way towards new devices IEEE Photonics Technol. Lett. 22, 1008 (2010)Google Scholar
20.Noda, J., Fukuma, M., Saito, S.Effect of Mg diffusion on Ti-diffused LiNbO3 waveguides. J. Appl. Phys. 49, 3150 (1978)CrossRefGoogle Scholar
21.Caccavale, F., Chakraborty, P., Capobianco, A., Gianello, G., Mansour, I.Characterization and optimization of Ti-diffused LiNbO3 optical waveguides by second diffusion of magnesium. J. Appl. Phys. 78, 187 (1995)CrossRefGoogle Scholar
22.Jundt, D.H., Fejer, M.M., Norwood, R.G., Bordui, P.F.Composition dependence of lithium diffusivity in lithium niobate at high temperature. J. Appl. Phys. 72, 3468 (1992)CrossRefGoogle Scholar
23.Bulmer, C.H.Characterization of Ti-indiffused waveguides in MgO-doped LiNbO3. Electron. Lett. 20, 902 (1984)CrossRefGoogle Scholar
24.Sjöberg, A., Arvidsson, G., Lipovskii, A.A.Characterization of waveguides fabricated by titanium diffusion in magnesium-doped lithium niobate. J. Opt. Soc. Am. B 5, 285 (1988)CrossRefGoogle Scholar
25.Noda, J., Fukuma, M.Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-a-fiber characteristics. Appl. Opt. 19, 591 (1980)Google Scholar
26.Fouchet, S., Carenco, A., Daguet, C., Guglielmi, R., Riviere, L.Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters. J. Lightwave Technol. 3, 700 (1987)CrossRefGoogle Scholar
27.Holmes, R.J., Smyth, D.M.Titanium diffusion into LiNbO3 as a function of stoichiometry. J. Appl. Phys. 55, 3531 (1984)CrossRefGoogle Scholar
28.Sugii, K., Fukuma, M., Iwasaki, H.A study of titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods. J. Mater. Sci. 13, 523 (1978)CrossRefGoogle Scholar
29.Nakamura, M., Higuchi, S., Takekawa, S., Terabe, K., Furukawa, Y., Kitamura, K.Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3. Jpn. J. Appl. Phys., Part 2 41, L49 (2002)CrossRefGoogle Scholar
30.Schlarb, U., Betzler, K.Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate. Phys. Rev. B 50, 751 (1994)CrossRefGoogle ScholarPubMed
31.Baumann, I., Bosso, S., Brinkmann, R., Corsini, R., Dinand, M., Greiner, A., Schäfer, K., Söchtig, J., Sohler, W., Suche, H., Wessel, R.Er-doped integrated optical devices in LiNbO3. IEEE J. Sel. Top. Quantum Electron. 2, 355 (1996)CrossRefGoogle Scholar
32.Bordui, F., Norwood, R.G., Jundt, D.H., Fejer, M.M.Preparation and characterization of off-congruent lithium niobate crystals. J. Appl. Phys. 71, 875 (1992)CrossRefGoogle Scholar
33.Zhang, D.L., Zheng, H., Hua, P.R., Pun, E.Y.B.Post-grown Li-rich vapor-transport-equilibration induced Mg diffusion within the MgO:LiNbO3 crystal. J. Mater. Res. 25 (9)1817 (2010)CrossRefGoogle Scholar