Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T06:23:11.785Z Has data issue: false hasContentIssue false

Secondary ion mass spectrometry study of erbium diffusion in lithium niobate crystals

Published online by Cambridge University Press:  31 January 2011

F. Caccavale
Affiliation:
Istituto Nazionale di Fisica della Materia-Università di Padova, Dipartimento di Fisica, via Marzolo 8, 35131 Padova, Italy
F. Segato
Affiliation:
Istituto Nazionale di Fisica della Materia-Università di Padova, Dipartimento di Fisica, via Marzolo 8, 35131 Padova, Italy
I. Mansour
Affiliation:
Università di Padova, Dipartimento di Elettronica ed Informatica, via Gradenigo 6/A, 35131 Padova, Italy
J. M. Almeida
Affiliation:
Centro de Física do Porto, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4150 Porto, Portugal
A. P. Leite
Affiliation:
Centro de Física do Porto, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4150 Porto, Portugal
Get access

Abstract

A systematic investigation of erbium diffusion in lithium niobate (LiNbO3) crystal as a function of crystal cut-direction, diffusion process parameters (temperature and time), and initial film thickness is reported. Depth concentration profiles of erbium are obtained by secondary ion mass spectrometry (SIMS). Combining experimental data with diffusion theory, the relevant diffusion parameters are derived. Diffusion from an infinite source of erbium ions is studied to evaluate the solid solubility lower limit of Er in LiNbO3. A thin film diffusion regime, with complete depletion of ion source, is also investigated. A comparison of Er diffusion with Er/Ti codiffusion in LiNbO3 crystals is reported.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ainslie, B. J., Graig, S. P., and Davey, S. T., IEEE J. Lightwave Technol. LT–6, 287 (1988).CrossRefGoogle Scholar
2.Kitagawa, T., Hattori, K., Shimiza, M., Ohmori, Y., and Kobayashi, M., Electron. Lett. 27, 334 (1991).CrossRefGoogle Scholar
3.Brinkmann, R., Sohler, W., and Suche, H., Electron. Lett. 27, 415 (1991).CrossRefGoogle Scholar
4.Becher, P., Brinkmann, R., Dinand, M., Sohler, W., and Suche, H., Appl. Phys. Lett. 61, 1257 (1992).CrossRefGoogle Scholar
5.Suche, H., Baumann, I., Hiller, D., and Sohler, W., Electron. Lett. 29, 1111 (1993).CrossRefGoogle Scholar
6.Lallier, E., Papillon, D., Pocholle, J. P., Papuchon, M., De Micheli, M., and Ostrowsky, D. B., Electron. Lett. 29, 175 (1993).CrossRefGoogle Scholar
7.Amin, J., Hempstead, M., Roman, J. E., and Wilkinson, J. S., Opt. Lett. 19, 1541 (1994).CrossRefGoogle Scholar
8.Almeida, J. M., Boyle, G., Leite, A. P., De La Rue, R. M., Ironside, Ch. N., Caccavale, F., Chakraborty, P., and Mansour, I., J. Appl. Phys. 78, 2193 (1995).CrossRefGoogle Scholar
9.Caccavale, F., Segato, F., and Mansour, I., J. Lightwave Technol. LT–15, 2294 (1997).CrossRefGoogle Scholar
10.Buchal, Ch. and Mohr, S., J. Mater. Res. 6, 134 (1991).CrossRefGoogle Scholar
11.Gill, D. M., Judy, A., McCaughan, L., and Wright, J. C., Appl. Phys. Lett. 60, 1067 (1992).CrossRefGoogle Scholar
12.Baumann, I., Brinkmann, R., Buchal, Ch., Dinand, M., Fleuster, M., Holzbrecher, H., Sohler, W., and Suche, H., Proceedings of the VI European Conference ECIO ‘93, Neuchatel, Switzerland, 1993, p. 3.Google Scholar
13.Bosso, S., and Carmannini, C., Proceedings of the III Italian Conference “Fotonica ‘93”, Arezzo, Italy, 1993, p. 193.Google Scholar
14.Dinand, M. and Sohler, W., IEEE J. Quantum Electron. QE–30, 1267 (1994).CrossRefGoogle Scholar
15.Baumann, I., Brinkmann, R., Dinand, M., Sohler, W., Beckers, L., Buchal, Ch., Fleuster, M., Holzbrechter, H., Paulus, H., Muller, K-H., Gog, Th., Materlik, G., Witte, O., Stolz, H., and von der Osten, W., Appl. Phys. A 64, 33 (1997).CrossRefGoogle Scholar
16.Crank, J., The Mathematics of Diffusion (Clarendon, Oxford, 1975).Google Scholar