Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T09:32:53.107Z Has data issue: false hasContentIssue false

Screen printing of stretchable electrodes for large area LED matrix

Published online by Cambridge University Press:  13 August 2015

Xinning Ho*
Affiliation:
Joining Technology Group, Singapore Institute of Manufacturing Technology, Singapore 638075, Singapore
Chek Kweng Cheng
Affiliation:
Joining Technology Group, Singapore Institute of Manufacturing Technology, Singapore 638075, Singapore
Rachel Lee Siew Tan
Affiliation:
Joining Technology Group, Singapore Institute of Manufacturing Technology, Singapore 638075, Singapore
Jun Wei*
Affiliation:
Joining Technology Group, Singapore Institute of Manufacturing Technology, Singapore 638075, Singapore
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

As electronic devices are indispensable in many aspects of our lives today, their integration with unconventional surfaces is increasingly essential. Electronic devices which maintain their electrical properties upon stretching are desirable for various wearable applications. Stretchable devices demonstrated are conventionally fabricated using semiconductor processing techniques. In this study, we demonstrate stretchable electrodes, which are basic components of electrical circuits, using screen printing, a large area printing method. It provides a low cost and scalable method to fabricate large area stretchable devices. Despite the larger width and thickness of the electrodes which increases the stiffness of the material, stretchability beyond 40% is demonstrated, which is suitable for certain wearable applications. The stretchable electrodes are integrated with light emitting diodes (LEDs) to demonstrate a stretchable LED matrix. The large area LED matrices exhibit variable stretchability, depending on the LED areal coverage. This technique is expected to be applicable in the fabrication of other stretchable, large area, and more complex electronic systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Honda, W., Harada, S., Arie, T., Akita, S., and Takei, K.: Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv. Funct. Mater. 24, 3299 (2014).Google Scholar
Drack, M., Graz, I., Sekitani, T., Someya, T., Kaltenbrunner, M., and Bauer, S.: An imperceptible plastic electronic wrap. Adv. Mater. 27, 34 (2014).CrossRefGoogle ScholarPubMed
Kim, D.H., Xiao, J., Song, J., Huang, Y., and Rogers, J.A.: Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108 (2010).Google Scholar
Zhu, Y. and Xu, F.: Buckling of aligned carbon nanotubes as stretchable conductors: A new manufacturing strategy. Adv. Mater. 24, 1073 (2012).Google Scholar
Xu, F., Wang, X., Zhu, Y., and Zhu, Y.: Wavy ribbons of carbon nanotubes for stretchable conductors. Adv. Funct. Mater. 22, 1279 (2012).CrossRefGoogle Scholar
Kim, T., Song, H., Ha, J., Kim, S., Kim, D., Chung, S., Lee, J., and Hong, Y.: Inkjet-printed stretchable single-walled carbon nanotube electrodes with excellent mechanical properties. Appl. Phys. Lett. 104, 113103 (2014).CrossRefGoogle Scholar
Kim, R-H., Bae, M-H., Kim, D.G., Cheng, H., Kim, B.H., Kim, D-H., Li, M., Wu, J., Du, F., Kim, H-S., Kim, S., Estrada, D., Hong, S.W., Huang, Y., Pop, E., and Rogers, J.A.: Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 11, 3881 (2011).CrossRefGoogle ScholarPubMed
Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J-H., Kim, P., Choi, J-Y., and Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009).Google Scholar
Lee, P., Lee, J., Lee, H., Yeo, J., Hong, S., Nam, K.H., Lee, D., Lee, S.S., and Ko, S.H.: Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326 (2012).CrossRefGoogle ScholarPubMed
Ho, X., Tey, J., Liu, W., Cheng, C.K., and Wei, J.: Biaxially stretchable silver nanowire transparent conductors. J. Appl. Phys. 113, 044311 (2013).CrossRefGoogle Scholar
Ho, X., Cheng, C.K., Tey, J., and Wei, J.: Biaxially stretchable transparent conductors that use nanowire networks. J. Mater. Res. 29, 2965 (2014).CrossRefGoogle Scholar
Lipomi, D.J., Tee, B.C-K., Vosgueritchian, M., and Bao, Z.: Stretchable organic solar cells. Adv. Mater. 23, 1771 (2011).Google Scholar
Lipomi, D.J., Lee, J.A., Vosgueritchian, M., Tee, B.C-K., Bolander, J.A., and Bao, Z.: Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates. Chem. Mater. 24, 373 (2012).CrossRefGoogle Scholar
Lee, M-S., Lee, K., Kim, S-Y., Lee, H., Park, J., Choi, K-H., Kim, H-K., Kim, D-G., Lee, D-Y., Nam, S.W., and Park, J-U.: High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures. Nano Lett. 13, 2814 (2013).CrossRefGoogle ScholarPubMed
Chou, N., Lee, J., and Kim, S.: Large-sized out-of-plane stretchable electrodes based on poly-dimethylsiloxane substrate. Appl. Phys. Lett. 105, 241903 (2014).CrossRefGoogle Scholar
Gutruf, P., Walia, S., Ali, M.N., Sriram, S., and Bhaskaran, M.: Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation. Appl. Phys. Lett. 104, 021908 (2014).CrossRefGoogle Scholar
Shi, X., Xu, R., Li, Y., Zhang, Y., Ren, Z., Gu, J., Rogers, J.A., and Huang, Y.: Mechanics design for stretchable, high areal coverage GaAs solar module on an ultrathin substrate. J. Appl. Mech. 81, 124502 (2014).Google Scholar
Kim, D-H., Liu, Z., Kim, Y-S., Wu, J., Song, J., Kim, H-S., Huang, Y., Hwang, K-c., Zhang, Y., and Rogers, J.A.: Optimized structural designs for stretchable silicon integrated circuits. Small 5, 2841 (2009).Google Scholar
Zhang, Y., Xu, S., Fu, H., Lee, J., Su, J., Hwang, K-C., Rogers, J.A., and Huang, Y.: Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9, 8062 (2013).Google Scholar
Zhang, Y., Wang, S., Li, X., Fan, J.A., Xu, S., Song, Y.M., Choi, K-J., Yeo, W-H., Lee, W., Nazaar, S.N., Lu, B., Yin, L., Hwang, K-C., Rogers, J.A., and Huang, Y.: Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv. Funct. Mater. 24, 2028 (2014).Google Scholar
Li, T., Suo, Z., Lacour, S.P., and Wagner, S.: Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 20, 3274 (2005).Google Scholar
Lacour, S.P., Chan, D., Wagner, S., Li, T., and Suo, Z.: Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl. Phys. Lett. 88, 204103 (2006).CrossRefGoogle Scholar
Lu, N., Wang, X., Suo, Z., and Vlassak, J.: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007).CrossRefGoogle Scholar
Robinson, A., Aziz, A., Liu, Q., Suo, Z., and Lacour, S.P.: Hybrid stretchable circuits on silicone substrate. J. Appl. Phys. 115, 143511 (2014).Google Scholar
Romeo, A., Liu, Q., Suo, Z., and Lacour, S.P.: Elastomeric substrates with embedded stiff platforms for stretchable electronics. Appl. Phys. Lett. 102, 131904 (2013).Google Scholar
Sekitani, T., Nakajima, H., Maeda, H., Fukushima, T., Aida, T., Hata, K., and Someya, T.: Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494 (2009).CrossRefGoogle ScholarPubMed
Cheng, H., Zhang, Y., Hwang, K-C., Rogers, J.A., and Huang, Y.: Buckling of a stiff thin film on a pre-strained bi-layer substrate. Int. J. Solids Struct. 51, 3113 (2014).Google Scholar
Supplementary material: File

Ho et al. supplementary material

Supplementary figures and tables

Download Ho et al. supplementary material(File)
File 3 MB