Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T14:20:32.807Z Has data issue: false hasContentIssue false

Scanning nonlinear dielectric microscopy

Published online by Cambridge University Press:  23 August 2011

Yasuo Cho*
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this article, scanning nonlinear dielectric microscopy (SNDM) with atomic resolution is reviewed. First, experimental results on the detection of ferroelectric domains are shown following a presentation about the theory and principle of SNDM. Next, a three-dimensional (3D) type of SNDM for measuring the 3D distribution of ferroelectric polarization and noncontact scanning nonlinear dielectric microscopy (NC-SNDM) are proposed. Using NC-SNDM under ultrahigh vacuum conditions, we clearly resolve the electric dipole moment distribution of Si atoms on a Si(111)7 × 7 surface. We also succeeded to resolve a fullerene (C60) molecule. Since the technique is applicable not only to semiconductors but also to both polar and non-polar dielectric materials, SrTiO3 and TiO2 surfaces were observed by NC-SNDM. Finally, we characterize an ultrahigh-density ferroelectric data storage system using SNDM as a pickup device and a congruent lithium tantalate single crystal as a ferroelectric recording medium.

Type
Invited Feature Review
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cho, Y., Kirihara, A., and Saeki, T.: New microscope for measuring the distribution of nonlinear dielectric properties. Denshi Joho Tsushin Gakkai Ronbunshi J78-C-1, 593 (1995) [in Japanese].Google Scholar
2.Cho, Y., Kirihara, A., and Saeki, T.: Scanning nonlinear dielectric microscope. Rev. Sci. Instrum. 67, 2297 (1996).CrossRefGoogle Scholar
3.Cho, Y., Atsumi, S., and Nakamura, K.: Scanning nonlinear dielectric microscope using a lumped constant resonator probe and its application to investigation of ferroelectric polarization distributions. Jpn. J. Appl. Phys. 36, 3152 (1997).Google Scholar
4.Cho, Y., Kazuta, S., and Matsuura, K.: Scanning nonlinear dielectric microscopy with nanometer resolution. Appl. Phys. Lett. 72, 2833 (1999).CrossRefGoogle Scholar
5.Odagawa, H. and Cho, Y.: Simultaneous observation of nano-sized ferroelectric domains and surface morphology using scanning nonlinear dielectric microscopy. Surf. Sci. 463, L621 (2000).CrossRefGoogle Scholar
6.Morita, T. and Cho, Y.: Piezoelectric performance and domain structure of epitaxial PbTiO3 thin film deposited by hydrothermal method. Jpn. J. Appl. Phys. 45, 4489 (2006).CrossRefGoogle Scholar
7.Gruverman, A., Auciello, O., Ramesh, R., and Tokumoto, H.: Scanning force microscopy of domain structure in ferroelectric thin films: Imaging and control. Nanotechnology 8, A38 (1997).CrossRefGoogle Scholar
8.Eng, L.M., Güntherodt, H.-J., Schneider, G.A., Köpke, U., and Saldaña, J.M.: Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium–titanate ceramics. Appl. Phys. Lett. 74, 223 (1999).CrossRefGoogle Scholar
9.Honda, K. and Cho, Y.: Visualization using scanning nonlinear dielectric microscopy of electrons and holes localized in the thin gate film of a metal–SiO2–Si3N4–SiO2–semiconductor flash memory. Appl. Phys. Lett. 86, 013501 (2005).CrossRefGoogle Scholar
10.Honda, K., Hashimoto, S., and Cho, Y.: Visualization of electrons and holes localized in the thin gate film of metal SiO2-Si3N4-SiO2 semiconductor type flash memory using scanning nonlinear dielectric microscopy after writing-erasing cycling. Appl. Phys. Lett. 86, 063515 (2005).CrossRefGoogle Scholar
11.Honda, K., Hashimoto, S., and Cho, Y.: Visualization of electrons and holes localized in the thin gate film of metal-oxide-nitride-oxide-semiconductor type flash memory by scanning nonlinear dielectric microscopy. Nanotechnology 16, 90 (2005).CrossRefGoogle Scholar
12.Honda, K., Hashimoto, S., and Cho, Y.: Visualization of charges stored in the floating gate of flash memory by scanning nonlinear dielectric microscopy. Nanotechnology 17, S185 (2006).CrossRefGoogle ScholarPubMed
13.Odagawa, H. and Cho, Y.: Measuring ferroelectric polarization component parallel to the surface by scanning nonlinear dielectric microscopy. Appl. Phys. Lett. 80, 2159 (2002).CrossRefGoogle Scholar
14.Sugihara, T., Odagawa, H., and Cho, Y.: Three-dimensional measurement for absolute value of polarization angle by scanning nonlinear dielectric microscopy. Jpn. J. Appl. Phys. 44, 4325 (2005).CrossRefGoogle Scholar
15.Sugihara, T. and Cho, Y.: Three-dimensional observation of nanoscale ferroelectric domains using scanning nonlinear dielectric microscopy with electric field correction by Kelvin probe force microscopy. Nanotechnology 17, S162 (2006).CrossRefGoogle ScholarPubMed
16.Ohara, K. and Cho, Y.: Non-contact scanning nonlinear dielectric microscopy. Nanotechnology 16, 54 (2005).CrossRefGoogle Scholar
17.Hirose, R., Ohara, K., and Cho, Y.: Observation of the Si(111)7×7 atomic structure using non-contact scanning nonlinear dielectric microscopy. Nanotechnology 18, 084014 (2007).CrossRefGoogle Scholar
18.Cho, Y. and Hirose, R.: Atomic dipole moment distribution of Si atoms on a Si(111)-(7×7) surface studied using noncontact scanning nonlinear dielectric microscopy. Phys. Rev. Lett. 99, 186101 (2007).CrossRefGoogle Scholar
19.Kobayashi, S., and Cho, Y.: Investigation of interface between fullerene molecule and Si(111)-7×7 surface by noncontact scanning nonlinear dielectric microscopy. J. Vac. Sci. Technol. B 28, C4D18 (2010).CrossRefGoogle Scholar
20.Tanaka, K. and Cho, Y.: Actual information storage with a recording density of 4 Tbit/in.2 in a ferroelectric recording medium. Appl. Phys. Lett. 97, 092901 (2010).CrossRefGoogle Scholar
21.Nakagawa, Y. : Scanning capacitance microscope, in Roadmap of Scanning Probe Microscopy, edited by Morita, S. (Springer, New York, 2006) pp. 35, 42.Google Scholar
22.Ganpule, C.S., Nagarajan, V., Li, H., Ogale, A.S., Steinhauer, D.E., Aggarwal, S., Williams, E., Ramesh, R., and De Wolf, P.: Role of 90° domains in lead zirconate titanate thin films. Appl. Phys. Lett. 77, 292 (2000).CrossRefGoogle Scholar
23.Ohara, K. and Cho, Y.: Effect of the surface adsorbed water on the studying of ferroelectrics by scanning nonlinear dielectric microscopy. J. Appl. Phys. 96, 7460 (2004).CrossRefGoogle Scholar
24.Wang, X.D., Hashizume, T., Shinohara, H., Saito, Y., Nishina, Y., and Sakurai, T.: Scanning tunneling microscopy of C60 on the Si(111)7x7 surface. Jpn. J. Appl. Phys. 31, L983 (1992).CrossRefGoogle Scholar
25.Hou, J.G., Jinlong, Y., Haiqian, W., Qunxiang, L., Chanhhan, Z., Hai, L., Wang, B., Chen, D.M., and Qingshi, Z.: Identifying molecular orientation of individual C60 on a Si(111)-(7 × 7) surface. Phys. Rev. Lett. 83, 3001 (1999).CrossRefGoogle Scholar
26.Hardman, P.J., Parkash, N.S., Muryn, C.A., Raikar, G.N., Thomas, A.G., Prime, A.F., Thornton, G., and Blake, R.J.: Oxgen-vacancy sites on TiO2(100)1x3 using surface core-level-shift photoelectron diffraction. Phys. Rev. B 47, 16056 (1993).CrossRefGoogle Scholar
27.Tanaka, K., Kurihashi, Y., Uda, T., Daimon, Y., Odagawa, N., Hirose, R., Hiranaga, Y., and Cho, Y.: Scanning nonlinear dielectric microscopy nano-science and technology for next generation high density ferroelectric data storage. Jpn. J. Appl. Phys. 47, 3311 (2008).CrossRefGoogle Scholar