Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T03:50:34.589Z Has data issue: false hasContentIssue false

RuIn3-xSnx, RuIn3-xZnx, and Ru1-yIn3—new thermoelectrics based on the semiconductor RuIn3

Published online by Cambridge University Press:  27 July 2011

M. Wagner*
Affiliation:
Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
R. Cardoso-Gil
Affiliation:
Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
N. Oeschler
Affiliation:
Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
H. Rosner
Affiliation:
Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
Yu. Grin
Affiliation:
Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A systematic investigation of the intermetallic phase Ru1-yIn3 (0 ≤ y ≤ 0.025) and its substitution derivatives RuIn3-xSnx and RuIn3-xZnx (x = 0.01, 0.025, 0.05, and 0.1) is performed. The samples were prepared from a liquid–solid reaction of components with subsequent spark plasma sintering treatment. Ru1-yIn3 exhibits n- and p-type behavior crossing over from low to high temperatures. Substitution of indium by tin or zinc up to 2.5 at.% leads to an increase of the charge carrier concentration, with negative (Sn) or positive (Zn) Seebeck values, respectively. The electrical resistivity was P changed from semiconductor- to metal-like properties by substitution, whereas the thermal conductivity was reduced down to 50% of that of RuIn3. Higher values of the thermoelectric figure of merit were achieved by chemical substitution (RuIn3-xSnx, RuIn3-xZnx), opening up a possibility for tuning the thermoelectric properties in this class of materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Paschen, S., Godart, C., and Grin, Yu.: Recent progress in the development of thermoelectric materials with complex crystal structures, in Complex Metallic Alloys, edited by Dubois, J.M. and Belin-Ferré, E. (Wiley-VCH, Weinheim, Germany, 2011), p. 365.Google Scholar
2.Häussermann, U., Boström, M., Viklund, P., Rapp, Ö., and Björnängen, T.: FeGa3 and RuGa3: Semiconducting intermetallic compounds. J. Solid State Chem. 165, 94 (2002).CrossRefGoogle Scholar
3.Schubert, K., Lukas, H.L., Meissner, H., and Bhan, S.: Zum Aufbau der Systeme Kobalt-Gallium, Palladium-Gallium, Palladium-Zinn und verwandter Legierungen. Z. Metallk. 50, 534 (1959).Google Scholar
4.Holleck, H., Nowotny, H., and Benesovsky, F.: Die Kristallstruktur von ThGa2 und RuIn3. Monatsh. Chem. 95, 1386 (1964).CrossRefGoogle Scholar
5.Bogdanov, D., Winzer, K., Nekrasov, I.A., and Pruschke, T.: Electronic properties of the semiconductor RuIn3. J. Phys. Condens Matter 19, 232202 (2007).CrossRefGoogle Scholar
6.Imai, Y. and Watanabe, A.: Electronic structures of semiconducting FeGa3, RuGa3, OsGa3, and RuIn3 with the CoGa3- or the FeGa3-type structure. Intermetallics 14, 722 (2006).CrossRefGoogle Scholar
7.Bhandari, C.M. and Rowe, D.M.: Optimization of carrier concentration, in CRC Handbook of Thermoelectrics, edited by Rowe, D.M. (CRC Press LLC, Boca Raton, FL, 1995), p. 43.Google Scholar
8.Aydemir, U., Candolfi, C., Borrmann, H., Baitinger, M., Ormeci, A., Carrillo-Cabrera, W., Chubilleau, C., Lenoir, B., Dauscher, A., Oeschler, N., Steglich, F., and Grin, Yu.: Crystal structure and transport properties of Ba8Ge433. Dalton Trans. 39, 1078 (2010).CrossRefGoogle Scholar
9.Nguyen, L.T.K., Aydemir, U., Baitinger, M., Bauer, E., Borrmann, H., Burkhardt, U., Custers, J., Haghighirad, A., Höfler, R., Luther, K.D., Ritter, F., Assmus, W., Grin, Yu., and Paschen, S.: Atomic ordering and thermoelectric properties of the n-type clathrate Ba8Ni3.5Ge42.10.4. Dalton Trans. 39, 1071 (2010).CrossRefGoogle Scholar
10.Zhang, H., Borrmann, H., Oeschler, N., Candolfi, C., Schnelle, W., Schmidt, M., Burkhardt, U., Baitinger, M., Zhao, J., and Grin, Yu.: Atomic interactions in the p-type clathrate I Ba8Au5.3Ge40.7. Inorg. Chem. 50, 1250 (2011).CrossRefGoogle ScholarPubMed
11.Pöttgen, R.: Preparation, crystal structure and properties of RuIn3. J. Alloy. Comp. 226, 59 (1995).CrossRefGoogle Scholar
12.Roof, R.N., Fisk, Z., and Smith, J.L.: Crystal data for RuIn3. Powder Diff. 1, 20 (1986).CrossRefGoogle Scholar
13.Pöttgen, R., Hoffmann, R., and Kotzyba, G.: Structure, chemical bonding and properties of CoIn3, RhIn3, and IrIn3. Z. Anorg. Allg. Chem. 624, 244 (1998).3.0.CO;2-G>CrossRefGoogle Scholar
14.Hadano, Y., Narazu, S., Avila, M.A., Onimaru, T., and Takabatake, T.: Thermoelectric and magnetic properties of a narrow-gap semiconductor FeGa3. J. Phys. Soc. Jpn. 78, 013702 (2009).CrossRefGoogle Scholar
15.Mahan, G.: Good thermoelectrics. Solid State Phys. 51, 81 (1997).CrossRefGoogle Scholar
16.Lue, C., Lai, W., and Kuo, Y.: Electrical and thermoelectric properties of the intermetallic FeGa3. J. Alloy. Comp. 392, 72 (2005).CrossRefGoogle Scholar
17.Amagai, Y., Yamamoto, A., Iida, T., and Takanashi, Y.: Thermoelectric properties of semiconductorlike intermetallic compounds TMGa3 (TM = Fe, Ru, and Os). J. Appl. Phys. 96, 5644 (2004).CrossRefGoogle Scholar
18.Mandrus, D., Keppens, V., Sales, B.C., and Sarrao, J.L.: Unusual transport and large diamagnetism in the intermetallic semiconductor RuAl2. Phys. Rev. B 58, 3712 (1998).CrossRefGoogle Scholar
19.Takagiwa, Y., Matsubayashi, Y., Suzumura, A., Okada, J.T., and Kimura, K.: Thermoelectric properties of binary semiconducting intermetallic compounds Al2Ru and Ga2Ru synthesized by spark plasma sintering process. Mater. Trans. 51, 988 (2010).CrossRefGoogle Scholar
20.Akselrud, L., Zavalii, P., Grin, Yu., Pecharski, V., Baumgartner, B., and Wölfel, E.: Use of the CSD program package for structure determination from powder data. Mater. Sci. Forum 133136, 335 (1993).CrossRefGoogle Scholar
21.Koepernik, K. and Eschrig, H.: Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 59, 1743 (1999).CrossRefGoogle Scholar
22.Perdew, J.P. and Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).CrossRefGoogle ScholarPubMed
23.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
24.Marzari, N., de Gironcoli, S., and Baroni, S.: Structure and phase stability of GaxIn1-xP solid solutions from computational alchemy. Phys. Rev. Lett. 72, 4001 (1994).CrossRefGoogle ScholarPubMed
25.Hlukhyy, V., Hoffmann, R., and Pöttgen, R.: The solid solution MgxIn3-xIr–formation of the FeGa3 type up to x = 0.73 and the cementite structure with x = 0.92. Z. Anorg. Allg. Chem. 630, 68 (2004).CrossRefGoogle Scholar
26.Viklund, P., Lidin, S., Berastegui, P., and Häussermann, U.: Variations of the FeGa3 structure type in the systems CoIn3-xZnx and CoGa3-xZnx. J. Solid State Chem. 165, 100 (2002).CrossRefGoogle Scholar