Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T03:34:09.786Z Has data issue: false hasContentIssue false

Room-temperature preparation of biaxially textured indium tin oxide thin films with ion-beam-assisted deposition

Published online by Cambridge University Press:  31 January 2011

Karola Thiele
Affiliation:
Institut für Materialphysik, Windausweg 2, 37073 Göttingen, Germany
Sibylle Sievers
Affiliation:
Institut für Materialphysik, Windausweg 2, 37073 Göttingen, Germany
Christian Jooss
Affiliation:
Institut für Materialphysik, Windausweg 2, 37073 Göttingen, Germany
Jörg Hoffmann
Affiliation:
Zentrum für Funktionswerkstoffe gGmbH, Windausweg 2, 37073 Göttingen, Germany
Herbert C. Freyhardt
Affiliation:
Institut für Materialphysik, Windausweg 2, 37073 Göttingen, Germany, and Zentrum für Funktionswerkstoffe gGmbH, Windausweg 2, 37073 Göttingen, Germany
Get access

Abstract

Biaxially aligned indium tin oxide (ITO) thin films were prepared by an ion-beamassisted deposition (IBAD) process at room temperature. Films with a transmittance at 550 nm of 90% and an electrical resistivity of 1.1 × 10−3 Ωcm for 300 and 250 nm thickness were obtained. Investigations of the texture evolution during IBAD film growth were carried out and compared to the well-established texture development in yttria-stabilized zirconia. An in-plane texture of 12.6° full width at half-maximum (FWHM) for a 1-μm-thick IBAD-ITO film was achieved. The quality of these films as electrically conductive buffer layers for YBa2Cu3O7-δ (YBCO) high-temperature superconductors was demonstrated by the subsequent deposition of high-currentcarrying YBCO films by thermal co-evaporation using a 3–5-nm-thick Y2O3 interlayer.A Jc of 0.76 MA/cm2 (77K, 0 T) was obtained for a 1 × 1 cm sample with ITO of 20° FWHM.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hamberg, I. and Granqvist, C.G., J. Appl. Phys. 60, R123 (1986).CrossRefGoogle Scholar
Song, P.K., Shigesato, Y., Yasui, I., Ow-Yang, C.W., Paine, D.C., Jpn. J. Appl. Phys. 37, 1870 (1998).CrossRefGoogle Scholar
Laux, S., Kaiser, N., Zöller, A., Götzelmann, R., Lauth, H., Bernitzki, H., Thin Solid Films 335, 1 (1998).CrossRefGoogle Scholar
Kim, J.S., Bae, J.W., Kim, H.J., Lee, N.E., Yeom, G.Y., and Oh, K.H., Thin solid films. 377–378, 103 (2000).CrossRefGoogle Scholar
Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
Iijima, Y., Hosaka, M., Tanabe, N., Sadakata, N., Saitoh, T., Kohno, O., and Takeda, K., J. Mater. Res. 13, 3106 (1998).CrossRefGoogle Scholar
Dzick, J., Hoffmann, J., Sievers, S., Kautschor, L-O., and Freyhardt, H.C., Physica C 372–376, 723 (2002).CrossRefGoogle Scholar
Usoskin, A., Freyhardt, H.C., Issaev, A., Dzick, J., Knoke, J., Oomen, M.P., Neumüller, H-W., IEEE Trans. Appl. Supercond. 13, (2003, in press)Google Scholar
Kellet, B.J., James, J.H., Gauzzi, A., Dwir, B., Pavuna, D., and Reinhart, F.K., Appl. Phys. Lett. 57, 1146 (1990).CrossRefGoogle Scholar
Kautschor, L-O., Dissertation, Institut für Materialphysik, UniversitätGöttingen, Göttingen, Germany (2002)Google Scholar
Wiesmann, J., Hoffmann, J., Usoskin, A., Garcia-Moreno, F., Heinemann, K., and Freyhardt, H.C., Appl. Superconductivity, Inst. Phys. Conf. Ser. No. 148, 503 (1995).Google Scholar
Iijima, Y., Onabe, K., Futaki, N., Tanabe, N., Sadakata, N., Kohno, O., and Ikeno, Y., IEEE Trans. Appl. Supercond. 3, 1510 (1993).CrossRefGoogle Scholar
Iijima, Y., Onabe, K., Futaki, N., Tanabe, N., Sadakata, N., Kohno, O., and Ikeno, Y., J. Appl. Phys. 74, 1905 (1993).CrossRefGoogle Scholar
Wiesmann, J., Dissertation, Institut für Materialphysik, Universität Göttingen, Göttingen, Germany (1998)Google Scholar
Ressler, K.G., Sonnenberg, N., and Cima, M.J., J. Am. Ceram. Soc. 80, 2637 (1997).CrossRefGoogle Scholar
Wang, C.P., Do, K.B., Beasley, M.R., Geballe, T.H., and Hammond, R.H., Appl. Phys. Lett. 71, 2955 (1997).CrossRefGoogle Scholar
Kim, D., Han, Y., Cho, J., and Koh, S., Thin Solid Films 377–378, 81 (2000).CrossRefGoogle Scholar
Holesinger, T.G., Foltyn, S.R., Arendt, P.N., Kung, H., Jia, Q.X., Dickerson, R.M., Dowden, P.C., DePaula, R.F., and Coulter, J.Y., J. Mater. Res. 15, 1110 (2000).CrossRefGoogle Scholar
Thiele, K., Sievers, S., Dzick, J., Kautschor, L-O., Jooss, Ch., Hoffmann, J., and Freyhardt, H.C., in Materials for High-Temperature Superconductor Technologies, edited by Paranthaman, M.P., Rupich, M.W., Salama, K., Mannhart, J., and Hasegawa, T. (Mater. Res. Soc. Symp. Proc. 689, Warrendale, PA, 2001), p. 259.Google Scholar
Ch. Jooss, Albrecht, J., Kuhn, H., Leonhardt, S., and Kronmüller, H., Rep. Prog. Phys. 65, 651 (2002).Google Scholar
Jooss, Ch., Kautschor, L-O., Delamare, M.P., Bringmann, B., Guth, K., Born, V., Sievers, S., Walter, H., Dzick, J., Hoffmann, J., Freyhardt, H.C., Boer, B. de, Holzapfel, B., and Sandiumenge, F., in High-Temperature Superconductors—Crystal Chemistry, Processing and Properties, edited by Balachandran, U., Freyhardt, H.C., Izumi, T., and Larbalestier, D.C. (Mater. Res. Soc. Symp. Proc. 659, Warrendale, PA, 2001), p. II7.1.Google Scholar